浏览全部资源
扫码关注微信
东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海 201620
*门永军,E-mail: y.men@dhu.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-06-07,
收稿日期:2024-04-03,
录用日期:2024-04-30
移动端阅览
谢锦春, 周莹杰, 门永军. 用于根系表型观察的含铜水凝胶基透明土壤. 高分子通报, 2024, 37(9), 1280–1290
Xie, J. C.; Zhou, Y. J.; Men, Y. J. Copper containing hydrogel-based transparent soil for root phenotype observation. Polym. Bull. (in Chinese), 2024, 37(9), 1280–1290
谢锦春, 周莹杰, 门永军. 用于根系表型观察的含铜水凝胶基透明土壤. 高分子通报, 2024, 37(9), 1280–1290 DOI: 10.14028/j.cnki.1003-3726.2024.24.098.
Xie, J. C.; Zhou, Y. J.; Men, Y. J. Copper containing hydrogel-based transparent soil for root phenotype observation. Polym. Bull. (in Chinese), 2024, 37(9), 1280–1290 DOI: 10.14028/j.cnki.1003-3726.2024.24.098.
水凝胶基透明土壤以廉价的方式解决了土壤不可见性的问题,极大地降低了根系表型观察的成本,因而受到广泛关注。已报道的水凝胶基透明土壤由低酰基结冷胶与海藻酸钠作为凝胶骨架,Mg
2+
作为交联剂,通过滴球法制备,但在吸收营养液后极易被微生物污染,限制了其在普通环境中的使用。本研究在已报道的水凝胶珠的基础上,通过浸入微量Cu
2+
,降低微生物对其透过率的影响,在经过60天的使用后,透过率仍保持在90%以上。当Cu
2+
浓度达到5×10
–5
mol·L
–1
时,油菜根系在根长、根表面积、平均根径以及根体积等根系形状表型上的结果与不含铜的透明土壤具有相似性,证明该水凝胶珠可作为在普通条件下进行油菜根系表型观察的基质。
Hydrogel-based transparent soil has received widespread attention because it cheaply solves the problem of soil invisibility
greatly reducing the cost of root phenotype observation. The reported hydrogel-based transparent soil consists of low acyl gellan gum and sodium alginate as the gel skeleton
Mg
2+
as the cross-linking agent
and is prepared by the drop ball method. However
it is easily contaminated by microorganisms after absorbing the nutrient solut
ion
which limits its use in ordinary environments. Based on the reported hydrogel beads
this work reduces the impact of microorganisms on their permeability by immersing trace amounts of Cu
2+
. After 60 days of use
the permeability still remains above 90%. When the Cu
2+
concentration reaches 5×10
–5
mol·L
–1
the root shape phenotypes of rapeseed roots such as root length
root surface area
average root diameter
and root volume are similar to those of transparent soil without copper
proving that the hydrogel beads can be used as a matrix for phenotypic observation of rapeseed roots under ordinary conditions.
透明土壤低酰基结冷胶根系表型观察硫酸铜海藻酸钠
Transparent soilLow acyl gellun gumRoot phenotype observationCopper sulfateSodium alginate
Zhang, Z. Y.; Fan, B. M.; Song, C.; Zhang, X. X.; Zhao, Q. W.; Ye, B.Advances in root system architecture: functionality, plasticity, and research methods. J. Resour. Ecol., 2022, 14(1), 15–24.
Maqbool, S.; Hassan, M. A.; Xia, X. C.; York, L. M.; Rasheed, A.; He, Z. H.Root system architecture in cereals: progress, challenges and perspective. Plant J., 2022, 110(1), 23–42.
Takahashi, H.; Pradal, C.Root phenotyping: important and minimum information required for root modeling in crop plants. Breed. Sci., 2021, 71(1), 109–116.
Metzner, R.; Eggert, A.; van Dusschoten, D.; Pflugfelder, D.; Gerth, S.; Schurr, U.; Uhlmann, N.; Jahnke, S.Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification. Plant Methods, 2015, 11, 17.
Pflugfelder, D.; Metzner, R.; van Dusschoten, D.; Reichel, R.; Jahnke, S.; Koller, R.Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI). Plant Meth., 2017, 13(1), 102.
Svane, S. F.; Dam, E. B.; Carstensen, J. M.; Thorup-Kristensen, K.A multispectral camera system for automated minirhizotron image analysis. Plant Soil, 2019, 441(1), 657–672.
Bottomley, P. A.; Rogers, H. H.; Foster, T. H.NMR imaging shows water distribution and transport in plant root systems in situ. Proc. Natl. Acad. Sci. USA, 1986, 83(1), 87–89.
Downie, H. F.; Valentine, T. A.; Otten, W.; Spiers, A. J.; Dupuy, L. X.Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo. Plant Signal. Behav., 2014, 9(10), e970421.
Downie, H.; Holden, N.; Otten, W.; Spiers, A. J.; Valentine, T. A.; Dupuy, L. X.Transparent soil for imaging the rhizosphere. PLoS One, 2012, 7(9), e44276.
郑静霞, 陈国旗, 缪玥钥, 杨海龙, 付俊. 高性能水凝胶传感器研究进展. 功能高分子学报, 2022, 35(4), 299–313.
Ma, L.; Chai, C. X.; Wu, W. N.; Qi, P.; Liu, X. C.; Hao, J. C.Hydrogels as the plant culture substrates: a review. Carbohydr. Polym., 2023, 305, 120544.
Montesano, F. F.; Parente, A.; Santamaria, P.; Sannino, A.; Serio, F.Biodegradable superabsorbent hydrogel IncreasesWater retention properties of growing media and plant growth. Agric. Agric. Sci. Procedia, 2015, 4, 451–458.
Ranganathan, N.; Bensingh, R. J.; Abdul, K., M.; Nayak, S. K.Cellulose-based hydrogels for agricultures. Cellulose-Based Superabsorbent Hydrogels. Cham: Springer, 2019, 1039–1059.
Ma, L.; Shi, Y. C.; Siemianowski, O.; Yuan, B.; Egner, T. K.; Mirnezami, S. V.; Lind, K. R.; Ganapathysubramanian, B.; Venditti, V.; Cademartiri, L.Hydrogel-based transparent soils for root phenotyping in vivo. Proc. Natl. Acad. Sci. USA, 2019, 116(22), 11063–11068.
李佳, 杜瑞英, 王旭, 陈光. 植物铜胁迫响应的生理与分子机制研究进展. 中国农学通报, 2023, 39(11), 18–28.
Elrys, A. S.; Wen, Y. H.; Qin, X. F.; Chen, Y. Z.; Zhu, Q. L.; Eltahawy, A. M.; Dan, X. Q.; Tang, S. R.; Wu, Y. Z.; Zhu, T. B.; Meng, L.; Zhang, J. B.; Müller, C.Initial evidence on the effect of copper on global cropland nitrogen cycling: a meta-analysis. Environ. Int., 2024, 184, 108491.
Madzovska-Malagurski, I.; Vukasinovic-Sekulic, M.; Kostic, D.; Levic, S.Towards antimicrobial yet bioactive Cu-alginate hydrogels. Biomed. Mater., 2016, 11(3), 035015.
Qian, J. M.; Ji, L. J.; Xu, W. J.; Hou, G. H.; Wang, J. L.; Wang, Y. P.; Wang, T. B.Copper-hydrazide coordinated multifunctional hyaluronan hydrogels for infected wound healing. ACS Appl. Mater. Interfaces, 2022, 14(14), 16018–16031.
Della Rosa, G.; Gostynska, N. E.; Ephraim, J. W.; Sganga, S.; Panuccio, G.; Palazzolo, G.; Tirelli, N.Magnesium alginate as a low-viscosity (intramolecularly cross-linked) system for the sustained and neuroprotective release of magnesium. Carbohydr. Polym., 2024, 331, 121871.
陈春梅, 傅钰, 庄晓雯, 许加超, 高昕, 付晓婷. 不同稀土离子对海藻酸钠凝胶特性的影响. 食品工业科技, 2022, 43(14), 52–58.
张新龙, 李美青, 李湘, 夏宝国, 刘天宝, 闫秀玲. 海藻酸钠水凝胶的研究进展. 材料科学, 2023, (6), 579–588.
Zhu, T.; Jiang, C.; Wang, M. L.; Zhu, C. Z.; Zhao, N.; Xu, J.Skin-inspired double-hydrophobic-coating encapsulated hydrogels with enhanced water retention capacity. Adv. Funct. Mater., 2021, 31(27), 2102433.
Jian, Y. K.; Handschuh-Wang, S.; Zhang, J. W.; Lu, W.; Zhou, X. C.; Chen, T.Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater. Horiz., 2021, 8(2), 351–369.
梁业恒, 邓孺孺, 高奕康, 秦雁, 刘旭拢. 水体铜离子吸收系数光谱(400-900 nm)测量. 遥感学报, 2016, 20(1), 27–34.
Lequeux, H.; Hermans, C.; Lutts, S.; Verbruggen, N.Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem., 2010, 48(8), 673–682.
Marques, D. M.; da Silva, A. B.; Mantovani, J. R.; Magalhães, P. C.; de Souza, T. C.Root morphology and leaf gas exchange in Peltophorum dubium (Spreng.) Taub. (Caesalpinioideae) exposed to copper-induced toxicity. S. Afr. J. Bot., 2019, 121, 186–192.
0
浏览量
43
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构