浏览全部资源
扫码关注微信
武汉理工大学材料科学与工程学院,武汉 430070
*梅启林,E-mail:meiqilin@whut.edu.cn;丁国民,E-mail:sdscdgm@126.com
*梅启林,E-mail:meiqilin@whut.edu.cn;丁国民,E-mail:sdscdgm@126.com
纸质出版日期:2024-11-20,
网络出版日期:2024-06-21,
收稿日期:2024-04-03,
录用日期:2024-05-15
移动端阅览
蔡永祺, 梅启林, 姜端洋, 徐建蓉, 高琳沁, 丁国民. Zn2+-光预聚丙烯酸酯弹性体的配位机理及其力学性能研究. 高分子通报, 2024, 37(11), 1608–1619
Cai, Y. Q.; Mei, Q. L.; Jiang, D. Y.; Xu, J. R. Gao, L. Q.; Ding, G. M. Research on metal-ligand mechanism and mechanical properties of Zn2+-UV precuring acrylate elastomer. Polym. Bull. (in Chinese), 2024, 37(11), 1608–1619
蔡永祺, 梅启林, 姜端洋, 徐建蓉, 高琳沁, 丁国民. Zn2+-光预聚丙烯酸酯弹性体的配位机理及其力学性能研究. 高分子通报, 2024, 37(11), 1608–1619 DOI: 10.14028/j.cnki.1003-3726.2024.24.100.
Cai, Y. Q.; Mei, Q. L.; Jiang, D. Y.; Xu, J. R. Gao, L. Q.; Ding, G. M. Research on metal-ligand mechanism and mechanical properties of Zn2+-UV precuring acrylate elastomer. Polym. Bull. (in Chinese), 2024, 37(11), 1608–1619 DOI: 10.14028/j.cnki.1003-3726.2024.24.100.
为了同时提高聚丙烯酸酯弹性体的强度和变形能力,通过光预聚工艺制备了不同黏度的液态丙烯酸酯树脂,使用过氧化苯甲酰(benzoyl peroxide,BPO)和
N
N
-二甲基苯胺(
N
N
-dimethylaniline,DMA)作为固化体系并提供配位原子与锌离子(Zn
2+
)产生金属配位键,增加分子链间的相互作用以提高聚合物的力学性能。研究发现在固化过程中树脂由淡黄色变为紫色,固化完全后最终变为绿色。深入探究了此体系颜色变化的原因,进而揭示Zn
2+
与聚合物分子链的配合机理:Zn
2+
同时与DMA中的N原子和BPO中的O原子产生配位键,当N、O上带有自由基时体系表现出紫色,无自由基时则表现为绿色。基于以上配位机理,Zn
2+
与分子链产生的配位键位于链端,极大地提高了弹性体的断裂伸长率,使制备的金属配位丙烯酸酯弹性体的断裂伸长率可从基体的630%提升至7400%。基于金属配位键的弱键特点,研究发现适当的热处理可调节配位键的数量,经过150 ℃加热处理后,相比于无配位体系,Zn
2+
配位丙烯酸酯弹性体的拉伸强度提高了28.6%,并且断裂伸长率提高了39.3%,即可同时提升弹性体的强度和变形能力。该研究为金属配位丙烯酸酯弹性体、高延伸丙烯酸酯弹性体的制备提供新思路,制备的弹性体可作为密封件、柔性传感器基体等在对材料的延展率有高要求的应用场景下使用。
In order to improve the strength and deformation of acrylate elastomer simultaneously
the liquid acrylate resin with different viscosities was prepared through the UV precuring process
then benzoyl peroxide (BPO) and
N
N
-dimethylaniline (DMA) were used as the curing system
which provided N
O atom coordinating with Zn
2+
so that the interaction between molecular chains was increased to enhance the mechanical properties of the elastomer. In the curing process
resin turned from light yellow to purple
and became green eventually after curing completely. The causes of the color change and the mechanism of Zn
2+
with the molecular chain of polymer were revealed: when N
O atoms provided by BPO and DMA
respectively
with free radicals coordinated with Zn
2+
the system became purple; the system turned green when the free radicals faded away completely. According to the coordination mechanism
metal coordination bonds generated between Zn
2+
and the molecular chains were located at the end of the chain
which greatly increased the elongation at break of the elastomer
so that the elongation at break of Zn
2+
-acrylate elastomer increa
sed to 7400% from 630%. Because of characteristics of the metal coordination bonds
we found that appropriate heat treatment can adjust the number of coordination bonds. After 150 ℃ treatment
the tensile strength and the elongation at break of Zn
2+
-acrylate elastomer increased by 28.6% and 39.6%
respectively
compared to those of the pure acrylate elastomer. In other words
both the tensile strength and elongation at break of Zn
2+
-acrylate elastomer increased. This study provides a strategy for metal coordination with acrylate polymer
which is expected to play a significant role in the research of high elongation acrylate elastomer. The elastomer prepared can be used as seals
flexible sensor substrates in scenarios requiring the high extension rate materials.
光预聚丙烯酸酯弹性体金属配位机理大变形能力
PhotoprepolymerizationAcrylate elastomerMetal-ligand mechanismExcellent deformability
Liu, H.; Li, Y. L.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Yan, X. R.; Guo, J.; Guo, Z. H.Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C, 2016, 4(1), 157-166.
Hancock, M.; Hawes, E.; Yang, F. Q.; Grulke, E.Crosslinking gradients of a photopolymerized multifunctional acrylate film control mechanical properties. J. Coat. Technol. Res., 2019, 16(4), 1153-1163.
Qin, X. D.; Li, X.; Wang, W.; Li, Q. Y.; Wang, T.; Cao, L.; Piao, J. M.; Chen, S. G.Synthesis of polyethyl acrylate interpenetrated poly methyl acrylate elastomer coating and its corrosion resistance properties. Mater. Lett., 2022, 314, 131880.
Asai, F.; Seki, T.; Sugawara-Narutaki, A.; Sato, K.; Odent, J.; Coulembier, O.; Raquez, J. M.; Takeoka, Y.Tough and three-dimensional-printable poly(2-methoxyethyl acrylate)-silica composite elastomer with antiplatelet adhesion property. ACS Appl. Mater. Interfaces, 2020, 12(41), 46621-46628.
Gao, H.; Sun, Y. C.; Wang, M. M.; Wu, B.; Han, G. Q.; Jin, L.; Zhang, K.; Xia, Y. Y.Self-healable and reprocessable acrylate-based elastomers with exchangeable disulfide crosslinks by thiol-ene click chemistry. Polymer, 2021, 212, 123132.
Miwa, Y.; Udagawa, T.; Kutsumizu, S.Repulsive segregation of fluoroalkyl side chains turns a cohesive polymer into a mechanically tough, ultrafast self-healable, nonsticky elastomer. Sci. Rep., 2022, 12(1), 12009.
Zheng, Y. Z.; Xu, D. L.; Tian, S. Y.; Li, M. L.; Wang, W. W.; Liu, K.Polar poly(n-butyl acrylate)-g-polyacrylonitrile elastomer with high temperature elasticity and healability as flexible electronic substrate. Fash. Text., 2021, 8(1), 4.
Suzuki, Y.; Cousins, D.; Wassgren, J.; Kappes, B. B.; Dorgan, J.; Stebner, A. P.Kinetics and temperature evolution during the bulk polymerization of methyl methacrylate for vacuum-assisted resin transfer molding. Compos. Part A Appl. Sci. Manuf., 2018, 104, 60-67.
Xiao, T.; Geng, L.; Dai, Y. C.; Zhao, J. T.; Liu, C. H.UV-cured polymer aided phase change thermal energy storage: preparation, mechanism and prospects. J. Energy Storage, 2023, 64, 107066.
Jiang, B.; Shi, X. R.; Zhang, T.; Huang, Y. D.Recent advances in UV/thermal curing silicone polymers. Chem. Eng. J., 2022, 435, 134843.
Kermaninejad, H.; Najafi, F.; Soleimani-Gorgani, A.Encapsulation of flexible organic light emitting diodes by UV-cure epoxy siloxane. J. Appl. Polym. Sci., 2019, 136(41), e48033.
Shen, Z. S.; Wu, Y. D.; Qiu, S. J.; Deng, H. X.; Hou, R. X.; Zhu, Y. B.UV-thermal dual-cured polymers with degradable and anti-bacterial function. Prog. Org. Coat., 2020, 148, 105783.
Garra, P.; Dietlin, C.; Morlet-Savary, F.; Dumur, F.; Gigmes, D.; Fouassier, J. P.; Lalevée, J.Photo-polymerization processes of thick films and in shadow areas: a review for the access to composites. Polym. Chem., 2017, 8(46), 7088-7101.
Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z. B.; Messersmith, P. B.; Holten-Andersen, N.Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater., 2015, 14(12), 1210-1216.
Han, Y. Y.; Wu, X. D.; Zhang, X. X.; Lu, C. H.Self-healing, highly sensitive electronic sensors enabled by metal-ligand coordination and hierarchical structure design. ACS Appl. Mater. Interfaces, 2017, 9(23), 20106-20114.
Xin, Y.; Liang, J. H.; Ren, L. T.; Gao, W. S.; Qiu, W. C.; Li, Z. H.; Qu, B. L.; Peng, A. J.; Ye, Z. X.; Fu, J.; Zeng, G.; He, X.Tough, healable, and sensitive strain sensor based on multiphysically cross-linked hydrogel for ionic skin. Biomacromolecules, 2023, 24(3), 1287-1298.
Cai, H. Y.; Wang, Z. T.; Utomo, N. W.; Vidavsky, Y.; Silberstein, M. N.Highly stretchable ionically crosslinked acrylate elastomers inspired by poly-electrolyte complexes. Soft Matter, 2022, 18(39), 7679-7688.
Jiang, F.; Zhang, X.; Hwang, W.; Briber, R. M.; Fang, Y. X.; Wang, H.Supramolecular luminescent triblock copolymer thermoplastic elastomer via metal-ligand coordination. Polym. Test., 2019, 78, 105956.
Tang, Z. H.; Huang, J.; Guo, B. C.; Zhang, L. Q.; Liu, F.Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules, 2016, 49(5), 1781-1789.
潘祖仁. 高分子化学. 北京: 化学工业出版社, 2014, 74-82.
Su, E.; Bilici, C.; Bayazit, G.; Ide, S.; Okay, O.Solvent-free UV polymerization of n-octadecyl acrylate in butyl rubber: a simple way to produce tough and smart polymeric materials at ambient temperature. ACS Appl. Mater. Interfaces, 2021, 13(18), 21786-21799.
Kim, D. S.; Seo, W. H.Ultraviolet-curing behavior and mechanical properties of a polyester acrylate resin. J. Appl. Polym. Sci., 2004, 92(6), 3921-3928.
Zhou, H. X.; Lu, P.; Gu, X. Y.; Li, P. X.Visible-light-mediated nucleophilic addition of an α-aminoalkyl radical to isocyanate or isothiocyanate. Org. Lett., 2013, 15(22), 5646-5649.
石秀敏. 几种过渡金属有机配位化合物的光谱研究. 长春: 吉林大学, 2010.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构