浏览全部资源
扫码关注微信
1.江南大学纺织科学与工程学院,生态纺织教育部重点实验室,无锡 214122
2.江苏省纺织品数字喷墨印花工程技术研究中心,无锡 214122
*张丽平,E-mail: zhanglp@jiangnan.edu.cn
纸质出版日期:2024-12-20,
网络出版日期:2024-10-14,
收稿日期:2024-05-11,
录用日期:2024-08-20
移动端阅览
杜康存, 刘锦锋, 肖畅, 陈重宇, 赵乐, 张丽平. 聚苯胺基电致变色储能器件的制备及性能研究. 高分子通报, 2024, 37(12), 1779–1790
Du, K. C.; Liu, J. F.; Xiao, C.; Chen, Z. Y.; Zhao, L.; Zhang, L. P. Preparation and performance of polyaniline based electrochromic energy storage device. Polym. Bull. (in Chinese), 2024, 37(12), 1779–1790
杜康存, 刘锦锋, 肖畅, 陈重宇, 赵乐, 张丽平. 聚苯胺基电致变色储能器件的制备及性能研究. 高分子通报, 2024, 37(12), 1779–1790 DOI: 10.14028/j.cnki.1003-3726.2024.24.147.
Du, K. C.; Liu, J. F.; Xiao, C.; Chen, Z. Y.; Zhao, L.; Zhang, L. P. Preparation and performance of polyaniline based electrochromic energy storage device. Polym. Bull. (in Chinese), 2024, 37(12), 1779–1790 DOI: 10.14028/j.cnki.1003-3726.2024.24.147.
电致变色储能设备兼具电致变色与储能功能,可以通过实时颜色变化指示储能状态,在节能建筑和智能电子领域备受瞩目。聚苯胺(PANI)具有丰富的颜色变化以及较高的理论比电容,在电致变色及储能领域均占有一席之地。本文为提高聚苯胺的电容,在用恒电流法制备聚苯胺膜时加入具有氧化还原活性的活性蓝19 (RB19),通过静电相互作用对聚苯胺进行掺杂,分析了苯胺与RB19的比例以及沉积时间对聚苯胺膜的形貌及电化学性能的影响,以沉积有聚苯胺薄膜的氧化铟锡(ITO)导电玻璃作为工作电极、ZnCl
2
作为电解液、锌片作为对电极组装电致变色储能器件,并对其进行研究。结果表明:活性蓝19的掺杂极大地提升了聚苯胺膜的电容,在50 mV/s的扫描速率下,PANI-RB19
100:1(20min)
的电容(
C
)可达PANI
(20min)
的3.29倍,在0.1 mA·cm
−2
的电流密度下,可获得32.41 mF·cm
−2
的面积比电容(
C
a
),电流密度增大10倍,有78.06%的电容保持率;电致变色储能器件在750 nm处可产生56.22%的光谱调制幅度,将两个器件串联可点亮红色LED灯组超过3 h。
Electrochromic energy storage devices have both electrochromic and energy storage functions
and can indicate the energy storage status through real-time color changes. They have attracted attention in the fields of energy-efficient buildings and intelligent electronics. Polyaniline (PANI) has rich color changes and a high theoretical specific capacitance
and occupies a place in the fields of electrochromism and energy storage. In this study
in order to improve the capacitance of polyaniline
reactive blue 19 (RB19) with redox activity was add
ed when the polyaniline film was prepared via galvanostatic method
and polyaniline was doped by electrostatic interaction. The effects of the ratio of aniline to reactive blue 19 and the deposition time on the morphology and electrochemical performance of the polyaniline film were analyzed. The electrochromic energy storage device was assembled using indium-tin oxide (ITO) conductive glass with polyaniline film as the working electrode
ZnCl
2
as the electrolyte
and zinc flake as the counter electrode
and the performance was studied. The results show that the doping of reactive blue 19 greatly enhances the capacitance of polyaniline film. At a scan rate of 50 mV/s
the capacitance (
C
) of PANI-RB19
100:1(20min)
can reach 3.29 times that of PANI
(20min)
. At a current density of 0.1 mA·cm
−2
an area capacitance (
C
a
) of 32.41 mF·cm
−2
can be obtained
and a ten fold increase in current density results in a capacitance retention rate of 78.06%. The electrochromic energy storage device can generate 56.22% spectral modulation amplitude at 750 nm
and connecting the two devices in series can light up a red LED lights more than 3 h.
电致变色储能聚苯胺活性蓝19
ElectrochromicEnergy storagePolyanilineReactive blue 19
Lu, J. L.; Song, H.; Li, S. N.; Wang, L.; Han, L.; Ling, H.; Lu, X. H. A poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol-gel assisted electropolymerization for electrochromic application. Thin Solid Films, 2015, 584, 353–358.
Platt, J. R. Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys., 1961, 34(3), 862–863.
Wang, Q. K.; Cao, S.; Meng, Q. C.; Wang, K.; Yang, T.; Zhao, J. L.; Zou, B. S. Robust and stable dual-band electrochromic smart window with multicolor tunability. Mater. Horiz., 2023, 10(3), 960–966.
Yeon, S. Y.; Seo, M.; Kim, Y.; Hong, H.; Chung, T. D. Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens. Bioelectron., 2022, 203, 114002.
Chen, Y. Z.; Niu, C. H.; Wang, L.; Wang, T. X.; Yang, M. Q.; Zhang, S. Y.; Lv, Y. Multi-pattern polyaniline electrochromic device by controllable three-dimensional movement of ions. Opt. Mater., 2024, 147, 114605.
Wang, Z.; Wang, X. Y.; Cong, S.; Geng, F. X.; Zhao, Z. G. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R Rep., 2020, 140, 100524.
Cai, G. F.; Darmawan, P.; Cui, M. Q.; Wang, J. X.; Chen, J. W.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater., 2016, 6(4), 1501882.
Gong, H.; Li, A.; Fu, G. X.; Zhang, M. Y.; Zheng, Z. L.; Zhang, Q. Q.; Zhou, K. L.; Liu, J. B.; Wang, H. Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films. J. Mater. Chem. A, 2023, 11(16), 8939–8949.
Li, Z. H.; Gong, L. J. Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion. Materials, 2020, 13(3), 548.
Fusalba, F.; Gouérec, P.; Villers, D.; Bélanger, D. Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J. Electrochem. Soc., 2001, 148(1), A1–A6.
Devendrachari, M. C.; Shimoga, G.; Lee, S.-H.; Heo, Y. H.; Kotresh, H. M. N.; Thotiyl, M. O.; Kim, S. Y.; Choi, D. S. Anthraquinone-2-sulfonic acid-loaded polyaniline nanostructures: construction of symmetric supercapacitor electrodes thereof. J. Energy Storage,2022, 56(B), 106033.
He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Q. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017, 7(11), 1601920.
Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater., 2020, 5, 5–19.
Wang, Y.; Zhong, X. L.; Liu, X. Q.; Lu, Z. L.; Su, Y. J.; Wang, M. Y.; Diao, X. G. A fast self-charging and temperature adaptive electrochromic energy storage device. J. Mater. Chem. A, 2022, 10(8), 3944–3952.
Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468), eaan8285.
Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci., 2013, 6(4), 1185–1191.
Wang, D. H.; Wang, L. F.; Liang, G. J.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, J. B.; Zhi, C. Y. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano, 2019, 13(9), 10643–10652.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构