浏览全部资源
扫码关注微信
1.华中科技大学图书馆,武汉 430074
2.华中科技大学知识产权信息服务中心,武汉 430074
*陈敦奎,E-mail: chendk@hust.edu.cn
纸质出版日期:2024-11-20,
网络出版日期:2024-08-12,
收稿日期:2024-05-27,
录用日期:2024-07-15
移动端阅览
陈敦奎, 张驰, 涂文艳, 李诗玮. 专利视角下熔融沉积3D打印技术发展趋势研究. 高分子通报, 2024, 37(11), 1654–1662
Chen, D. K.; Zhang, C.; Tu, W. Y.; Li, S. W. Analysis on development trends of fused deposition 3D-printing technology from a patent perspective. Polym. Bull. (in Chinese), 2024, 37(11), 1654–1662
陈敦奎, 张驰, 涂文艳, 李诗玮. 专利视角下熔融沉积3D打印技术发展趋势研究. 高分子通报, 2024, 37(11), 1654–1662 DOI: 10.14028/j.cnki.1003-3726.2024.24.161.
Chen, D. K.; Zhang, C.; Tu, W. Y.; Li, S. W. Analysis on development trends of fused deposition 3D-printing technology from a patent perspective. Polym. Bull. (in Chinese), 2024, 37(11), 1654–1662 DOI: 10.14028/j.cnki.1003-3726.2024.24.161.
熔融沉积成型(FDM)以其成本低、操作简易、适用性广、可靠性强等优点成为应用最为广泛的3D打印技术之一,在汽车、航空航天、医疗等多个领域受到广泛关注。对FDM领域专利申请情况进行统计和分析,重点从专利申请趋势、专利布局区域、专利申请人、专利技术主题等维度全面展示了该领域的专利布局情况。结果表明:我国FDM专利申请量自2011年开始快速增长,目前已成为该领域专利申请量最多的国家,但海外专利申请量相对于欧美国家偏少;FDM专利的各技术分类中,成型设备专利申请量自2015年开始快速增长,逐渐成为专利数量最多的技术分类,创新主要集中在喷头、送料机构、运动机构和加热原件等部件中;通过对比全球主要专利申请人的专利技术特点,建议我国FDM领域创新主体加大在数据处理和成型材料方面的研发投入,加强产学研合作和海外市场专利布局,构建具有行业领先优势的高价值专利组合。
Fused deposition modeling (FDM) has become one of the most widely used 3D printing technologies
due to its advantages such as low cost
ease of operation
wide applicability
and strong reliability. It has attracted increasing attention and research in various fields including automobile
aerospace
and medical applications. Patent applications of FDM are analyzed
focusing on patent application trends
patent layout areas
patent applicants and technology themes
providing a comprehensive overview of patent layout in this field. The results indicate that China’s FDM patent applications have been rapidly increasing since 2011
making it the country with the highest number of patent applications in this field. However
the number of overseas patent applications is relatively low compared to that of European and American countries. Among the various technical classifications of FDM patents
the number of patents related to modeling equipment has been rapidly increasing since 2015
gradually becoming the most prevalent technology classification. Innovations in FDM equipment are primarily concentrated on components such as nozzles
feeding mechanisms
motion mechanisms and heating elements. After comparing the technical characteristics of major global applicants
it is recommended that China’s innovators in the FDM field increase their R& D investments in data processing and materials. Additionally
it is crucial to strengthen industry-university-research cooperation and patent layouts in overseas markets with the aim of establishing high-value patent portfolios that offer industry-leading advantages.
增材制造3D打印熔融沉积成型专利分析
Additive manufacturing3D-PrintingFused deposition modelingPatent analysis
曾绍连. 金属增材制造技术的研究进展. 中国金属通报, 2022, (7), 186-188.
Gu, D. D.; Meiners, W.; Wissenbach, K.; Poprawe, R.Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev., 2012, 57(3), 133-164.
Bandyopadhyay, A.; Traxel, K. D.Invited review article: metal-additive manufacturing—modeling strategies for application-optimized designs. Addit. Manuf., 2018, 22, 758-774.
Balichakra, M.; Bontha, S.; Krishna, P.; Balla, V. K.Prediction and validation of residual stresses generated during laser metal deposition of γ titanium aluminide thin wall structures. Mater. Res. Express, 2019, 6(10), 106550.
Bol, R. J. M.; Šavija, B.Micromechanical models for FDM 3D-printed polymers: a review. Polymers, 2023, 15(23), 4497.
吴天山, 于鸿彬, 李小青, 陈楚技. 基于遗传算法的BP神经网络熔融沉积成型翘曲变形预测研究. 热加工工艺, 2019, 48(22), 48-52.
王智, 于宁, 黎静. 熔融沉积纤维增强复合材料的研究进展. 材料导报, 2021, 35(15), 15197-15204.
Paul, S.Finite element analysis in fused deposition modeling research: a literature review. Measurement, 2021, 178, 109320.
Anerao, P.; Kulkarni, A.; Munde, Y.A review on exploration of the mechanical characteristics of 3D-printed biocomposites fabricated by fused deposition modelling (FDM). Rapid Prototyp. J., 2024, 30(3), 430-440.
Ehsanul Haque, M.; Banerjee, D.; Bikash Mishra, S.; Kumar Nanda, B.A numerical approach to measure the surface roughness of FDM build part. Mater. Today Proc., 2019, 18, 5523-5529.
林文先, 周功苗, 叶总一, 刘文文, 陈洁, 朱德华, 曹宇. 熔融沉积3D打印参数对PETG-Tough薄壁不同角度尺寸精度的影响. 塑料工业, 2024, 52(3), 110-116.
王智, 于宁, 黎静. 熔融沉积纤维增强复合材料的研究进展. 材料导报, 2021, 35(15), 15197-15204.
王素玉, 曾庆锁, 王瑶, 鹿国庆. 3D打印速度的影响因素及改善措施研究. 机床与液压, 2020, 48(7), 47-51.
Cano-Vicent, A.; Tambuwala, M. M.; Hassan, S. S.; Barh, D.; Aljabali, A. A. A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á.Fused deposition modelling: current status, methodology, applications and future prospects. Addit. Manuf., 2021, 47, 102378.
Galetto, M.; Verna, E.; Genta, G.Effect of process parameters on parts quality and process efficiency of fused deposition modeling. Comput. Ind. Eng., 2021, 156, 107238.
Agarwal, K. M.; Shubham, P.; Bhatia, D.; Sharma, P.; Vaid, H.; Vajpeyi, R.Analyzing the impact of print parameters on dimensional variation of ABS specimens printed using fused deposition modelling (FDM). Sens. Int., 2022, 3, 100149.
Kim, H.; Fernando, T.; Li, M. Y.; Lin, Y. R.; Tseng, T. L B.Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater., 2018, 52(2), 197-206.
Dickson, A. N.; Barry, J. N.; McDonnell, K. A.; Dowling, D. P.Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf., 2017, 16, 146-152.
Parandoush, P.; Lin, D.A review on additive manu-facturing of polymer-fiber composites. Compos. Struct., 2017, 182, 36-53.
段康容, 张立红, 王新宇. 基于直流无刷电机的FDM打印机速度提升研究. 模具制造, 2023, 23(3), 72-77.
陈广俊. 基于熔融堆积原理快速成型设备控制系统研究. 哈尔滨: 哈尔滨工业大学, 2019.
杨钦杰, 李佳汶, 李明, 陈刚, 李光照, 彭必友, 韩锐. 熔融沉积3D打印设备研究进展. 中国塑料, 2022, 36(2), 157-171.
Yadav, D. K.; Srivastava, R.; Dev, S.Design & fabrication of ABS part by FDM for automobile application. Mater. Today Proc., 2020, 26, 2089-2093.
Klippstein, H.; Diaz De Cerio Sanchez, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L.Fused deposition modeling for unmanned aerial vehicles (UAVs): a review. Adv. Eng. Mater., 2018, 20(2), 1700552.
Li, Z. M.; Feng, D.; Li, B.; Xie, D. L.; Mei, Y.FDM printed MXene/MnFe2O4/MWCNTs reinforced TPU composites with 3D Voronoi structure for sensor and electromagnetic shielding applications. Compos. Sci. Technol., 2023, 231, 109803.
Melocchi, A.; Briatico-Vangosa, F.; Uboldi, M.; Parietti, F.; Turchi, M.; von Zeppelin, D.; Maroni, A.; Zema, L.; Gazzaniga, A.; Zidan, A.Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int. J. Pharm., 2021, 592, 119901.
Haryńska, A.; Kucinska-Lipka, J.; Sulowska, A.; Gubanska, I.; Kostrzewa, M.; Janik, H.Medical-grade PCL based polyurethane system for FDM 3D printing-characterization and fabrication. Materials, 2019, 12(6), 887.
Choi, W. J.; Hwang, K. S.; Kwon, H. J.; Lee, C. M.; Kim, C. H.; Kim, T. H.; Heo, S. W.; Kim, J. H.; Lee, J. Y.Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater. Sci. Eng. C, 2020, 110, 110693.
Dey, A.; Rahman, M. M.; Gupta, A.; Yodo, N.; Lee, C. W.A performance study on 3D-printed bioplastic pots from soybean by-products. Sustainability, 2023, 15(13), 10535.
Esposito Corcione, C.; Palumbo, E.; Masciullo, A.; Montagna, F.; Torricelli, M. C.Fused deposition modeling (FDM): an innovative technique aimed at reusing Lecce stone waste for industrial design and building applications. Constr. Build. Mater., 2018, 158, 276-284.
Wang, Z.; Liu, Y. H.; Zhang, S.Preparation method of high resilience nonslip basketball sole composite material. J. Nanomater., 2022, 2022, 4988169.
Aydin, M.Additive manufacturing: is it a new era for furniture production?J. Mech. Eng. Autom., 2015, 5(6), 338-347.
Jain, P. K.; Jain, P. K.Use of 3D printing for home applications: a new generation concept. Mater. Today Proc., 2021, 43, 605-607.
Wu, J. J.; Huang, L. M.; Zhao, Q.; Xie, T.4D printing: history and recent progress. Chinese J. Polym. Sci., 2018, 36(5), 563-575.
Taylor, S. L.; Shah, R. N.; Dunand, D. C.Microstructure and porosity evolution during sintering of Ni-Mn-Ga wires printed from inks containing elemental powders. Intermetallics, 2019, 104, 113-123.
Liu, H.; He, H.; Huang, B.Favorable thermoresponsive shape memory effects of 3D printed poly(lactic acid)/poly(ε-caprolactone) blends fabricated by fused deposition modeling. Macromol. Mater. Eng., 2020, 305(11), 2000295.
Guo, J. H.; Zhang, R. R.; Zhang, L. N.; Cao, X. D.4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett., 2018, 7(4), 442-446.
孙舒玮, 李妍, 李星枰. 4D打印陶瓷前驱体在个性化定制首饰中的应用初探. 宝石和宝石学杂志(中英文), 2022, 24(03), 52-61.
Wang, Q. R.; Tian, X. Y.; Huang, L.; Li, D. C.; Malakhov, A. V.; Polilov, A. N.Programmable morphing composites with embedded continuous fibers by 4D printing. Mater. Des., 2018, 155, 404-413.
Rayate, A.; Jain, P. K.A review on 4D printing material composites and their applications. Mater. Today Proc., 2018, 5(9), 20474-20484.
Kuang, X.; Roach, D. J.; Hamel, C. M.; Yu, K.; Qi, H. J.Materials, design, and fabrication of shape programmable polymers. Multifunct. Mater., 2020, 3(3), 032002.
Koualiarella, A.; Arvanitidis, A.; Argyros, A.; Kousiatza, C.; Karakalas, A.; Lagoudas, D.; Michailidis, N.Tuning of shape memory polymer properties by controlling 3D printing strategy. CIRP Ann., 2020, 69(1), 213-216.
Goo, B.; Hong, C. H.; Park, K.4D printing using anisotropic thermal deformation of 3D-printed thermo-plastic parts. Mater. Des., 2020, 188, 108485.
Cerbe, F.; Mahlstedt, D.; Sinapius, M.; Hühne, C.; Böl, M.Relationship between programming stress and residual strain in FDM 4D printing. Prog. Addit. Manuf., 2024, 9(1), 123-132.
衣春波, 赵文华, 邓璐芗, 许鑫. 基于专利信息的技术创新策源评价指标体系构建与应用. 情报杂志, 2021, 40(2): 55-62.
吕璐成, 罗文馨, 许景龙, 王莉莉, 马丽婧. 专利情报方法、工具、应用研究进展及新技术应用趋势. 情报学进展, 2020, 13(00), 235-278.
Crump, S. S. Apparatus and method for creating three-dimensional objects. US patent, US5121329A, 1992-06-09.
周翔, 吴文双, 丁杉, 吕晨, 郑兰斌, 吴志华, 艾晓蕾, 赵薇, 孙文明, 吴贫, 卞晨, 桂鑫, 崔怿然, 桂鹏, 潘正村, 宗泽. 一种可扇形活动的3D打印机用喷头. 中国专利, CN115847815A, 2023-03-28.
郑功李, 冯振. 一体式金属打印喷头. 中国专利, CN211031243U, 2020-07-17.
唐京科, 朱业拓. 喷头组件及应用其的3D打印设备. 中国专利, CN219926940U, 2023-10-31.
吴小平, 罗天珍. 带有交错进料混色腔的三维打印机喷头. 中国专利, CN116198117A, 2023-06-02.
Kim, H. K.Multifilament selection and supply device for fdm-type 3D printer using single extruder. Korean patent, KR102232492B1, 2021-03-26.
吴文征, 曲涵, 张伟, 李子涵, 赵继. 一种预浸润连续纤维双螺杆挤出式增材制造打印喷头. 中国专利, CN112917901B, 2021-06-08.
刘世杰, 马世博, 张双杰, 梁帅, 闫华军. 一种多料口气动式粒料3D打印喷头装置. 中国专利, CN108819227B, 2018-11-16.
Consalvi, J. J.High speed FDM 3D printer with closed loop motion system. US patent, US11370164B1, 2022-06-28.
杨丽花, 陈文龙. 一种适用于FDM 3D打印机新型高精度热床自动调平机构. 中国专利, CN218020180U, 2022-12-13.
Kenneth, F. M.; Andrew, S.Five degree of freedom additive manufacturing device. US patent, US1125-4046B2, 2022-02-22.
Missout, A.Very high temperature hot end for fused deposition modeling printer. US patent, US11633916B2, 2023-04-25.
Nixon, J. R.; Newell, C.; Diekmann, T.Laser preheating in three-dimensional printing. US patent, US11192298B2, 2021-12-07.
刘雪峰, 李昂, 万祥睿. 一种3D打印随形控温装置及方法. 中国专利, CN116811255A, 2023-09-29.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构