浏览全部资源
扫码关注微信
中石化(北京)化工研究院有限公司,北京 100013
*祁鑫,E-mail: qix.bjhy@sinopec.com
纸质出版日期:2024-11-20,
网络出版日期:2024-07-25,
收稿日期:2024-06-04,
录用日期:2024-06-26
移动端阅览
祁鑫. 聚烯烃共价自适应网络研究进展. 高分子通报, 2024, 37(11), 1550–1569
Qi, X. Research progress on polyolefin covalent adaptable networks. Polym. Bull. (in Chinese), 2024, 37(11), 1550–1569
祁鑫. 聚烯烃共价自适应网络研究进展. 高分子通报, 2024, 37(11), 1550–1569 DOI: 10.14028/j.cnki.1003-3726.2024.24.166.
Qi, X. Research progress on polyolefin covalent adaptable networks. Polym. Bull. (in Chinese), 2024, 37(11), 1550–1569 DOI: 10.14028/j.cnki.1003-3726.2024.24.166.
聚烯烃具备质轻、价廉、性能可调、易加工等优点,广泛应用于我们的日常生产生活中。但由于难降解、难回收,聚烯烃在给我们生活带来便利的同时也引起了严重的白色污染问题。将共价自适应网络引入聚烯烃不但有利于实现聚烯烃的回收利用,还可赋予聚烯烃高附加值,是解决白色污染问题的重要措施。本文详细介绍了聚烯烃共价自适应网络的设计策略,包括动态共价键的类型和网络的构建方式(化学改性法、直接聚合法和聚合后修饰法)
总结了聚烯烃共聚自适应网络在回收利用、自修复、焊接、形状记忆、增容等方面的应用,并对未来的发展进行了展望。
Polyolefin is widely used daily because of its advantages of light weight
low price
adjustable performance
and easy processing. However
due to the difficulty of degradation and recycling
polyolefin not only brings convenience to our lives but also causes serious white pollution. Introducing covalent adaptable networks (CANs) into polyolefin is not only beneficial for achieving polyolefin recycling
but also endows polyolefin with high added value
which is an important measure to solve the problem of white pollution. In this review
the design strategy of polyolefin CANs is introduced in detail
including the types of dynamic covalent bonds and the construction mode of the networks (chemical modification
direct polymerization
and post-polymerization modification). The applications of polyolefin CANs in recycling
self-healing
welding
shape memory
and compatibilization are summarized
and future development is prospected.
聚烯烃共价自适应网络回收自修复
PolyolefinCovalent adaptable networksRecycleSelf-healing
Bahri-Laleh, N.; Hanifpour, A.; Mirmohammadi, S. A.; Poater, A.; Nekoomanesh-Haghighi, M.; Talarico, G.; Cavallo, L.Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog. Polym. Sci., 2018, 84, 89-114.
Rosenboom, J. G.; Langer, R.; Traverso, G.Bioplastics for a circular economy. Nat. Rev. Mater., 2022, 7(2), 117-137.
Hassanian-Moghaddam, D.; Asghari, N.; Ahmadi, M.Circular polyolefins: advances toward a sustainable future. Macromolecules, 2023, 56(15), 5679-5697.
Schyns, Z. O. G.; Shaver, M. P.Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun., 2021, 42(3), e2000415.
Cuadri, A. A.; Martín-Alfonso, J. E.The effect of thermal and thermo-oxidative degradation conditions on rheological, chemical and thermal properties of HDPE. Polym. Degrad. Stabil., 2017, 141, 11-18.
Zhang, M. Q.; Wang, M.; Sun, B.; Hu, C. Q.; Xiao, D. Q.; Ma, D.Catalytic strategies for upvaluing plastic wastes. Chem, 2022, 8(11), 2912-2923.
Jiao, X. C.; Zheng, K.; Hu, Z. X.; Zhu, S.; Sun, Y. F.; Xie, Y.Conversion of waste plastics into value-added carbonaceous fuels under mild conditions. Adv. Mater., 2021, 33(50), 2005192.
Wang, Y. L.; Huang, Z. D.; Liu, G. X.; Huang, Z.A new paradigm in pincer iridium chemistry: PCN complexes for (de)hydrogenation catalysis and beyond. Acc. Chem. Res., 2022, 55(15), 2148-2161.
Wang, X. Y.; Gao, Y. S.; Tang, Y.Sustainable developments in polyolefin chemistry: progress, challenges, and outlook. Prog. Polym. Sci., 2023, 143, 101713.
Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N.Covalent adaptable networks (CANs): a unique paradigm in crosslinked polymers. Macromolecules, 2010, 43(6), 2643-2653.
Webber, M. J.; Tibbitt, M. W.Dynamic and reconfigurable materials from reversible network interactions. Nat. Rev. Mater., 2022, 7, 541-556.
Liu, C.; Tan, Y. Z.; Xu, H. P.Functional polymer materials based on dynamic covalent chemistry. Sci. China Mater., 2022, 65(8), 2017-2034.
Stern, M. D.; Tobolsky, A. V.Stress-time-temperature relations in polysulfide rubbers. Rubber Chem. Technol., 1946, 19(4), 1178-1192.
Luo, J. C.; Demchuk, Z.; Zhao, X.; Saito, T.; Tian, M.; Sokolov, A. P.; Cao, P. F.Elastic vitrimers: beyond thermoplastic and thermoset elastomers. Matter, 2022, 5(5), 1391-1422.
Zhang, B. R.; De Alwis Watuthanthrige, N.; Wanasinghe, S. V.; Averick, S.; Konkolewicz, D.Complementary dynamic chemistries for multifunctional polymeric materials. Adv. Funct. Mater., 2022, 32(8), 2108431.
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L.Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058), 965-968.
Sadri, M.; Patil, S.; Perkins, J.; Gunter, Z.; Cheng, S. W.; Qiang, Z.Polymeric dynamic crosslinker for upcycling of fragile low-molecular-weight polypropylene. ACS Appl. Polym. Mater., 2023, 5(6), 4056-4068.
Yang, Y. X.; Huang, L. Y.; Wu, R. Y.; Niu, Z.; Fan, W. F.; Dai, Q. Q.; Cui, L.; He, J. Y.; Bai, C. X.Self-strengthening, self-welding, shape memory, and recyclable polybutadiene-based material driven by dual-dynamic units. ACS Appl. Mater. Interfaces, 2022, 14(2), 3344-3355.
Qi, X.; Zhang, J. C.; Zhang, L. Q.; Yue, D. M.Bio-based, robust, shape memory, self-healing and recyclable elastomers based on a semi-interpenetrating dynamic network. J. Mater. Chem. A, 2021, 9(45), 25399-25407.
He, Z. K.; Niu, H.; Liu, L. Y.; Xie, S. Q.; Hua, Z.; Li, Y.Elastomeric polyolefin vitrimer: dynamic imine bond cross-linked ethylene/propylene copolymer. Polymer, 2021, 229, 124015.
Xiao, Y. K.; Liu, P. W.; Wang, W. J.; Li, B. G.Dynamically cross-linked polyolefin elastomers with highly improved mechanical and thermal performance. Macromolecules, 2021, 54(22), 10381-10387.
Tanaka, R.; Fujii, H.; Kida, T.; Nakayama, Y.; Shiono, T.Incorporation of boronic acid functionality into isotactic polypropylene and its application as a cross-linking point. Macromolecules, 2021, 54(3), 1267-1272.
Qi, X.; Pan, C. L.; Zhang, L. Q.; Yue, D. M.Bio-based, self-healing, recyclable, reconfigurable multifunctional polymers with both one-way and two-way shape memory properties. ACS Appl. Mater. Interfaces, 2023, 15(2), 3497-3506.
Tretbar, C. A.; Neal, J. A.; Guan, Z. B.Direct silyl ether metathesis for vitrimers with exceptional thermal stability. J. Am. Chem. Soc., 2019, 141(42), 16595-16599.
Saed, M. O.; Lin, X. Y.; Terentjev, E. M.Dynamic semicrystalline networks of polypropylene with thiol-anhydride exchangeable crosslinks. ACS Appl. Mater. Interfaces, 2021, 13(35), 42044-42051.
Boul, P. J.; Reutenauer, P.; Lehn, J. M.Reversible Diels-Alder reactions for the generation of dynamic combinatorial libraries. Org. Lett., 2005, 7(1), 15-18.
Gacal, B.; Durmaz, H.; Tasdelen, M. A.; Hizal, G.; Tunca, U.; Yagci, Y.; Demirel, A. L.Anthracene–maleimide-based Diels-Alder “click chemistry” as a novel route to graft copolymers. Macromolecules, 2006, 39(16), 5330-5336.
Wang, A. H.; Niu, H.; He, Z. K.; Li, Y.Thermoreversible cross-linking of ethylene/propylene copolymer rubbers. Polym. Chem., 2017, 8(31), 4494-4502.
He, Z. K.; Niu, H.; Zheng, N.; Liu, S. H.; Li, Y.Poly(ethylene-co-propylene)/poly(ethylene glycol) elastomeric hydrogels with thermoreversibly cross-linked networks. Polym. Chem., 2019, 10(35), 4789-4800.
Liu, S. H.; Liu, X. Y.; He, Z. K.; Liu, L. Y.; Niu, H.Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels-Alder chemistry: the cross-linking reaction kinetics. Polym. Chem., 2020, 11(36), 5851-5860.
Chakma, P.; Konkolewicz, D.Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed., 2019, 58(29), 9682-9695.
Kar, G. P.; Saed, M. O.; Terentjev, E. M.Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification. J. Mater. Chem. A, 2020, 8(45), 24137-24147.
Denissen, W.; Winne, J. M.; Du Prez, F. E.Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci., 2016, 7(1), 30-38.
Gao, Y. C.; Niu, H.Polypropylene-based transesteri-fication covalent adaptable networks with internal catalysis. Polym. Chem., 2024, 15(9), 884-895.
Wang, S.; Ma, S. Q.; Qiu, J. F.; Tian, A. P.; Li, Q.; Xu, X. W.; Wang, B. B.; Lu, N.; Liu, Y. L.; Zhu, J.Upcycling of post-consumer polyolefin plastics to covalent adaptable networks via in situ continuous extrusion cross-linking. Green Chem., 2021, 23(8), 2931-2937.
Zhang, G. G.; Feng, H. R.; Liang, K.; Wang, Z.; Li, X. L.; Zhou, X. X.; Guo, B. C.; Zhang, L. Q.Design of next-generation cross-linking structure for elastomers toward green process and a real recycling loop. Sci. Bull., 2020, 65(11), 889-898.
An, W. L.; Wang, X. L.; Yang, Y.; Xu, H. X.; Xu, S. M.; Wang, Y. Z.Synergistic catalysis of binary alkalis for the recycling of unsaturated polyester under mild conditions. Green Chem., 2019, 21(11), 3006-3012.
Black, S. P.; Sanders, J. K. M.; Stefankiewicz, A. R.Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev., 2014, 43(6), 1861-1872.
Fenimore, L. M.; Chen, B. R.; Torkelson, J. M.Simple upcycling of virgin and waste polyethylene into covalent adaptable networks: catalyst-free, radical-based reactive processing with dialkylamino disulfide bonds. J. Mater. Chem. A, 2022, 10(46), 24726-24745.
Chen, B. R.; Fenimore, L. M.; Chen, Y. X.; Barbon, S. M.; Brown, H. A.; Auyeung, E.; Shan, C. L. P.; Torkelson, J. M.Novel covalent adaptable networks (CANs) of ethylene/1-octene copolymers (EOCs) made by free-radical processing: comparison of structure-property relationships of EOC CANs with EOC thermosets. Polym. Chem., 2023, 14(31), 3621-3637.
Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolaÿ, R.; Zhang, Y. Z.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K.Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules, 2012, 45(1), 142-149.
Kamada, J.; Koynov, K.; Corten, C.; Juhari, A.; Yoon, J. A.; Urban, M. W.; Balazs, A. C.; Matyjaszewski, K.Redox responsive behavior of thiol/disulfide-functionalized star polymers synthesized via atom transfer radical polymerization. Macromolecules, 2010, 43(9), 4133-4139.
Xu, Z.; Meng, S.; Wei, D. W.; Bao, R. Y.; Wang, Y.; Ke, K.; Yang, W.Hierarchical network relaxation of a dynamic cross-linked polyolefin elastomer for advanced reversible shape memory effect. Nanoscale, 2023, 15(11), 5458-5468.
Maaz, M.; Riba-Bremerch, A.; Guibert, C.; Van Zee, N. J.; Nicolaÿ, R.Synthesis of polyethylene vitrimers in a single step: consequences of graft structure, reactive extrusion conditions, and processing aids. Macromolecules, 2021, 54(5), 2213-2225.
Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L.High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356(6333), 62-65.
Kim, C.; Ejima, H.; Yoshie, N.Polymers with autonomous self-healing ability and remarkable reprocessability under ambient humidity conditions. J. Mater. Chem. A, 2018, 6(40), 19643-19652.
Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin, B. S.Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules, 2015, 48(7), 2098-2106.
Fang, X.; Tian, N. G.; Hu, W. Y.; Qing, Y. N.; Wang, H.; Gao, X.; Qin, Y. G.; Sun, J. Q.Dynamically cross-linking soybean oil and low-molecular-weight polylactic acid toward mechanically robust, degradable, and recyclable supramolecular plastics. Adv. Funct. Mater., 2022, 32(46), 2208623.
Yuan, D.; Delpierre, S.; Ke, K.; Raquez, J. M.; Dubois, P.; Manas-Zloczower, I.Biomimetic water-responsive self-healing epoxy with tunable properties. ACS Appl. Mater. Interfaces, 2019, 11(19), 17853-17862.
Nishimura, Y.; Chung, J.; Muradyan, H.; Guan, Z. B.Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design. J. Am. Chem. Soc., 2017, 139(42), 14881-14884.
Prasanna Kar, G.; Lin, X.; Terentjev, E. M.Fused filament fabrication of a dynamically crosslinked network derived from commodity thermoplastics. ACS Appl Polym Mater, 2022, 4(6), 4364-4372.
Aglietto, M.; Alterio, R.; Bertani, R.; Galleschi, F.; Ruggeri, G.Polyolefin functionalization by carbene insertion for polymer blends. Polymer, 1989, 30(6), 1133-1136.
McFarren, G. A.; Sanderson, T. F.; Schappell, F. G.Azidosilane polymer-filler coupling agent. Polym. Eng. Sci., 1977, 17(1), 46-49.
Crabtree, R. H.Alkane C–H activation and functionalization with homogeneous transition metal catalysts: a century of progress—a new millennium in prospect. J. Chem. Soc., Dalton Trans., 2001(17), 2437-2450.
Neidhart, E. K.; Hua, M. T.; Peng, Z. X.; Kearney, L. T.; Bhat, V.; Vashahi, F.; Alexanian, E. J.; Sheiko, S. S.; Wang, C.; Helms, B. A.; Leibfarth, F. A.C-H functionalization of polyolefins to access reprocessable polyolefin thermosets. J. Am. Chem. Soc., 2023, 145(50), 27450-27458.
Dey, I.; Muhammed Ajnas, N.; Rege, S. S.; Islam, S. S.; Misra, A.; Samanta, K.; Manna, K.; Bose, S.Does the varying reactivity in the transient polymer network through dynamic exchange regulate the closed-loop circularity in polyolefin vitrimers?ACS Appl. Mater. Interfaces, 2023, 15(45), 53003-53016
Caffy, F.; Nicolaÿ, R.Transformation of polyethylene into a vitrimer by nitroxide radical coupling of a bis-dioxaborolane. Polym. Chem., 2019, 10(23), 3107-3115.
Ricarte, R. G.; Tournilhac, F.; Cloître, M.; Leibler, L.Linear viscoelasticity and flow of self-assembled vitrimers: the case of a polyethylene/dioxaborolane system. Macromolecules, 2020, 53(5), 1852-1866.
Odenwald, L.; Wimmer, F. P.; Mast, N. K.; Schußmann, M. G.; Wilhelm, M.; Mecking, S.Molecularly defined polyolefin vitrimers from catalytic insertion polymerization. J. Am. Chem. Soc., 2022, 144(29), 13226-13233.
Tan, C.; Zou, C.; Chen, C. L.Material properties of functional polyethylenes from transition-metal-catalyzed ethylene-polar monomer copolymerization. Macromolecules, 2022, 55(6), 1910-1922.
Yang, F.; Pan, L.; Ma, Z.; Lou, Y. H.; Li, Y. Y.; Li, Y. S.Highly elastic, strong, and reprocessable cross-linked polyolefin elastomers enabled by boronic ester bonds. Polym. Chem., 2020, 11(19), 3285-3295.
Wang, Z. T.; Gu, Y.; Ma, M. Y.; Liu, Y. L.; Chen, M.Strengthening polyethylene thermoplastics through a dynamic covalent networking additive based on alkylboron chemistry. Macromolecules, 2021, 54(4), 1760-1766.
Tanaka, R.; Tonoko, N.; Kihara, S. I.; Nakayama, Y.; Shiono, T.Reversible star assembly of polyolefins using interconversion between boroxine and boronic acid. Polym. Chem., 2018, 9(27), 3774-3779.
Kida, T.; Tanaka, R.; Nitta, K. H.; Shiono, T.Effect of the number of arms on the mechanical properties of a star-shaped cyclic olefin copolymer. Polym. Chem., 2019, 10(41), 5578-5583.
Ahmadi, M.; Hanifpour, A.; Ghiassinejad, S.; van Ruymbeke, E.Polyolefins vitrimers: design principles and applications. Chem. Mater., 2022, 34(23), 10249-10271.
Geyer, R.; Jambeck, J. R.; Law, K. L.Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7), e1700782.
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H.Critical advances and future opportunities in upcycling commodity polymers. Nature, 2022, 603(7903), 803-814.
Stukalin, E. B.; Cai, L. H.; Kumar, N. A.; Leibler, L.; Rubinstein, M.Self-healing of unentangled polymer networks with reversible bonds. Macromolecules, 2013, 46(18), 7525-7541.
Neumann, L. N.; Oveisi, E.; Petzold, A.; Style, R. W.; Thurn-Albrecht, T.; Weder, C.; Schrettl, S.Dynamics and healing behavior of metallosupramolecular polymers. Sci. Adv., 2021, 7(18), eabe4154.
Zou, C.; Chen, C. L.Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins. Angew. Chem. Int. Ed., 2020, 59(1), 395-402.
Deng, Y. K.; Yuan, Y.; Chen, Y. L.Covalently cross-linked and mechanochemiluminescent polyolefins capable of self-healing and self-reporting. CCS Chem., 2021, 3(5), 1316-1324.
Wang, W. Y.; Zha, X. J.; Bao, R. Y.; Ke, K.; Liu, Z. Y.; Yang, M. B.; Yang, W.Vitrimers of polyolefin elastomer with physically cross-linked network. J. Polym. Res., 2021, 28(6), 210.
Xu, Y. W.; Thurber, C. M.; Lodge, T. P.; Hillmyer, M. A.Synthesis and remarkable efficacy of model polyethylene-graft-poly(methyl methacrylate) copolymers as compatibilizers in polyethylene/poly(methyl meth-acrylate) blends. Macromolecules, 2012, 45(24), 9604-9610.
Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S.A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater., 2021, 33(6), e2000713.
Delaey, J.; Dubruel, P.; Van Vlierberghe, S.Shape-memory polymers for biomedical applications. Adv. Funct. Mater., 2020, 30(44), 1909047.
Xiao, R.; Huang, W. M.Heating/solvent responsive shape-memory polymers for implant biomedical devices in minimally invasive surgery: current status and challenge. Macromol. Biosci., 2020, 20(8), e2000108.
Ji, F. C.; Liu, X. D.; Lin, C. H.; Zhou, Y.; Dong, L.; Xu, S. B.; Sheng, D. K.; Yang, Y. M.Reprocessable and recyclable crosslinked polyethylene with triple shape memory effect. Macromol. Mater. Eng., 2019, 304(3), 1800528..
Xie, T.Tunable polymer multi-shape memory effect. Nature, 2010, 464(7286), 267-270.
Wang, Y.; Xia, L.; Xin, Z. X.Triple shape memory effect of foamed natural Eucommia ulmoides gum/high-density polyethylene composites. Polym. Adv. Technol., 2018, 29(1), 190-197.
Xian, J. Y.; Geng, J. T.; Wang, Y.; Xia, L.Quadruple-shape-memory effect of TPI/LDPE/HDPE composites. Polym. Adv. Technol., 2018, 29(2), 982-988.
Ryan, K. R.; Down, M. P.; Banks, C. E.Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications. Chem. Eng. J., 2021, 403, 126162.
Melchels, F. P. W.; Feijen, J.; Grijpma, D. W.A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24), 6121-6130.
Yuan, S. Q.; Shen, F.; Chua, C. K.; Zhou, K.Polymeric composites for powder-based additive manufacturing: materials and applications. Prog. Polym. Sci., 2019, 91, 141-168.
Tibbits, S.4D printing: multi-material shape change. Archit. Des., 2014, 84(1), 116-121.
Koning, C.; Van Duin, M.; Pagnoulle, C.; Jerome, R.Strategies for compatibilization of polymer blends. Prog. Polym. Sci., 1998, 23(4), 707-757.
Tsuruoka, A.; Takahashi, A.; Aoki, D.; Otsuka, H.Fusion of different crosslinked polymers based on dynamic disulfide exchange. Angew. Chem. Int. Ed., 2020, 59(11), 4294-4298.
Tretbar, C.; Castro, J.; Yokoyama, K.; Guan, Z. B.Fluoride-catalyzed siloxane exchange as a robust dynamic chemistry for high-performance vitrimers. Adv. Mater., 2023, 35(28), e2303280.
Clarke, R. W.; Sandmeier, T.; Franklin, K. A.; Reich, D.; Zhang, X.; Vengallur, N.; Patra, T. K.; Tannenbaum, R. J.; Adhikari, S.; Kumar, S. K.; Rovis, T.; Chen, E. Y. X.Dynamic crosslinking compatibilizes immiscible mixed plastics. Nature, 2023, 616(7958), 731-739.
Yokoyama, K.; Guan, Z. B.A vitrimer acts as a com-patibilizer for polyethylene and polypropylene blends. Angew. Chem. Int. Ed., 2024, 63(20), e202317264.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构