浏览全部资源
扫码关注微信
中国海洋大学食品科学与工程学院,青岛 266404
*刘炳杰,E-mail: liubj@ouc.edu.cn
纸质出版日期:2024-11-20,
网络出版日期:2024-09-05,
收稿日期:2024-06-12,
录用日期:2024-07-23
移动端阅览
边智宇, 张芳, 孟祥红, 刘炳杰. 基于聚(N,N-二乙基丙烯酰胺)温度响应型接枝共聚物的制备与表征. 高分子通报, 2024, 37(11), 1597–1607
Bian, Z. Y.; Zhang, F.; Meng, X. H.; Liu, B. J. Preparation and characterization of temperature responsive graft copolymer based on poly(N,N-diethylacrylamide). Polym. Bull. (in Chinese), 2024, 37(11), 1597–1607
边智宇, 张芳, 孟祥红, 刘炳杰. 基于聚(N,N-二乙基丙烯酰胺)温度响应型接枝共聚物的制备与表征. 高分子通报, 2024, 37(11), 1597–1607 DOI: 10.14028/j.cnki.1003-3726.2024.24.174.
Bian, Z. Y.; Zhang, F.; Meng, X. H.; Liu, B. J. Preparation and characterization of temperature responsive graft copolymer based on poly(N,N-diethylacrylamide). Polym. Bull. (in Chinese), 2024, 37(11), 1597–1607 DOI: 10.14028/j.cnki.1003-3726.2024.24.174.
以明胶和
N
N
-二乙基丙烯酰胺(DEAM)为原料,通过自由基共聚反应,成功合成了具有温度响应性的接枝共聚物明胶-
g
-聚(
N
N
-二乙基丙烯酰胺)(GPD)。利用傅里叶变换红外光谱(FTIR)、纳米粒度分析仪、分光光度法、光学显微镜、扫描电子显微镜(SEM)、旋转流变仪和细胞毒性试验对GPD进行表征和分析。结果表明,当DEAM的用量为0.25 mL时,合成的GPD具有快速且可逆的温度响应性,测得的相转变温度(LCST)为29.5 ℃。随着温度升至LCST以上,GPD水溶液会由无色透明变为白色不透明。进一步探究发现,在临近LCST时,小的温度变化便会引起溶液体系中GPD与水分子之间亲-疏水相互作用的改变,进而引发GPD分子链重排,出现“水合-脱水”现象,即发生相转变。
Gelatin-
g
-poly(
N
N
-diethylacrylamide) copolymer (GPD)
the temperature responsive graft copolymer
was
successfully synthesized by free radical copolymerization reaction using gelatin and
N
N
-diethylacrylamide (DEAM) as raw materials. Fourier transform infrared spectroscopy (FTIR)
nanoparticle size analyzer
spectrophotometry
optical microscopy
scanning electron microscopy (SEM)
rotational rheometer
and cytotoxicity test were used to characterize and analyze GPD. The results showed that GPD has been found to respond to temperature change quickly and reversibly
with a measured lower critical solution temperature (LCST) of 29.5 ℃ when the amount of DEAM was 0.25 mL. As the temperature rose above LCST
the GPD aqueous solution turned from colorless and transparent to white and opaque. Further investigation revealed that a slight temperature change near the LCST could alter the hydrophilic-hydrophobic interactions between GPD and water molecules in the solution system. The rearrangement of the GPD molecular chains led to the “hydration-dehydration” phenomenon
also known as the phase transition.
明胶NN-二乙基丙烯酰胺纳米凝胶温度响应性相转变
GelatinNN-diethylacrylamideNanogelTemperature responsivenessPhase transition
Yin, Y. L.; Hu, B.; Yuan, X.; Cai, L.; Gao, H. L.; Yang, Q.Nanogel: a versatile nano-delivery system for biomedical applications. Pharmaceutics, 2020, 12(3), 290.
Jha, A.; Rama, A.; Ladani, B.; Verma, N.; Kannan, S.; Naha, A.Temperature and pH-responsive nanogels as intelligent drug delivery systems: a comprehensive review. J. Appl. Pharm. Sci., 2021, 11(12), 1-16.
González-Ayón, M. A.; Licea-Rodriguez, J.; Méndez, E. R.; Licea-Claverie, A.NVCL-based galacto-functionalized and thermosensitive nanogels with GNRDs for chemo/photothermal-therapy. Pharmaceutics, 2022, 14(3), 560.
Raemdonck, K.; Demeester, J.; de Smedt, S.Advanced nanogel engineering for drug delivery. Soft Matter, 2009, 5(4), 707-715.
Kabanov, A. V.; Vinogradov, S. V.Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed., 2009, 48(30), 5418-5429.
Das, S. S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G. Z.Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397.
Ahmed, S.; Alhareth, K.; Mignet, N.Advancement in nanogel formulations provides controlled drug release. Int. J. Pharm., 2020, 584, 119435.
Kohsaka, Y.; Tanimoto, Y.Synthesis of thermo-responsive polymer via radical (co)polymerization of N,N-dimethyl-α-(hydroxymethyl)acrylamide with N,N-diethylacrylamide. Polymers, 2016, 8(10), 374.
Li, G.; Varga, I.; Kardos, A.; Dobryden, I.; Claesson, P. M.Temperature-dependent nanomechanical properties of adsorbed poly-NIPAm microgel particles immersed in water. Langmuir, 2021, 37(5), 1902-1912.
Hoffman, A. S.Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev., 2013, 65(1), 10-16.
Salzmann, P.; Perrotta, A.; Coclite, A. M.Different response kinetics to temperature and water vapor of acrylamide polymers obtained by initiated chemical vapor deposition. ACS Appl. Mater. Interfaces, 2018, 10(7), 6636-6645.
Blackman, L. D.; Gibson, M. I.; O’Reilly, R. K.Probing the causes of thermal hysteresis using tunable Nagg micelles with linear and brush-like thermoresponsive coronas. Polym. Chem., 2017, 8(1), 233-244.
Ngadaonye, J. I.; Geever, L. M.; Killion, J.; Higginbotham, C. L.Development of novel chitosan-poly(N,N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J. Polym. Res., 2013, 20(7), 161.
Havanur, S.; Farheenand, V.; JagadeeshBabu, P. E.Synthesis and optimization of poly(N,N-diethylacrylamide) hydrogel and evaluation of its anticancer drug doxorubicin’s release behavior. Iran. Polym. J., 2019, 28(2), 99-112.
Shen, L.; Zhang, G. Z.Formation of mesoglobules by poly(N,N-diethylacrylamide) chains in dilute solutions. Chinese J. Polym. Sci., 2009, 27(4), 561-567.
Panayiotou, M.; Pöhner, C.; Vandevyver, C.; Wandrey, C.; Hilbrig, F.; Freitag, R.Synthesis and characterisation of thermo-responsive poly(N,N′-diethylacrylamide) microgels. React. Funct. Polym., 2007, 67(9), 807-819.
Luo, S. Z.; Han, M. C.; Cao, Y. H.; Ling, C. X.; Zhang, Y. Y.Temperature- and pH-responsive unimolecular micelles with a hydrophobic hyperbranched core. Colloid Polym. Sci., 2011, 289(11), 1243-1251.
Li, X. T.; Zhao, D.; Shi, X. D.; Qiu, G.; Lu, X. H.Self-assembly and the hemolysis effect of monodisperse N, N-diethylacrylamide/acrylic acid nanogels with high contents of acrylic acid. Soft Matter, 2016, 12(35), 7273-7280.
Lakshminarayanan, R.; Sridhar, R.; Loh, X. J.; Nandhakumar, M.; Barathi, V. A.; Kalaipriya, M.; Kwan, J. L.; Liu, S. P.; Beuerman, R. W.; Ramakrishna, S.Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats. Int. J. Nanomed., 2014, 9, 2439-2458.
Jeong, L.; Park, W. H.Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Int. J. Mol. Sci., 2014, 15(4), 6857-6879.
Işıklan, N.; Tokmak, Ş.Microwave based synthesis and spectral characterization of thermo-sensitive poly(N,N-diethylacrylamide) grafted pectin copolymer. Int. J. Biol. Macromol., 2018, 113, 669-680.
Işıklan, N.; Altınışık, Z.Temperature-responsive alginate-g-poly(N,N-diethylacrylamide) copolymer: synthesis, characterization, and swelling behavior. J. Appl. Polym. Sci., 2018, 135(38), 46688.
Ngadaonye, J. I.; Geever, L. M.; McEvoy, K. E.; Killion, J.; Brady, D. B.; Higginbotham, C. L.Evaluation of novel antibiotic-eluting thermoresponsive chitosan-PDEAAm based wound dressings. Int. J. Polym. Mater. Polym. Biomater., 2014, 63(17), 873-883.
Chen, Y.; Sun, P.; Zhang, Y.; Ye, Y.Fluorescence anisotropy analysis of comb-type grafted poly(N,N-diethylacrylamide-co-acrylic acid)-g-poly(N,N-diethylacrylamide) microgels labeled by acenaphthylene. J. Appl. Polym. Sci., 2018, 135(46), 46742.
Lima, L. R. M.; de Lima Ramos, E. L.; Silva, M. F. S.; de Oliveira Silva Ribeiro, F.; Sousa, J. S.; Pessoa, C.; Silva, D. A.; Feitosa, J. P. A.; Paula, H. C. B.; de Paula, R. C. M.Poly(N-isopropylacrylamide)/galactomannan from Delonix regia seed thermal responsive graft copolymer via Schiff base reaction. Int. J. Biol. Macromol., 2021, 166, 144-154.
Town, A.; Niezabitowska, E.; Kavanagh, J.; Barrow, M.; Kearns, V. R.; García-Tuñón, E.; McDonald, T. O.Understanding the phase and morphological behavior of dispersions of synergistic dual-stimuli-responsive poly(N-isopropylacrylamide) nanogels. J. Phys. Chem. B, 2019, 123(29), 6303-6313.
Frenzel, L.; Lehmkühler, F.; Koof, M.; Lokteva, I.; Grübel, G.The phase diagram of colloidal silica-PNIPAm core-shell nanogels. Soft Matter, 2020, 16(2), 466-475.
Pang, X. C.; Cui, S. X.Single-chain mechanics of poly(N, N-diethylacrylamide) and poly(N-isopropylacrylamide): comparative study reveals the effect of hydrogen bond donors. Langmuir, 2013, 29(39), 12176-12182.
Lesage de la Haye, J.; Pontes da Costa, A.; Pembouong, G.; Ruhlmann, L.; Hasenknopf, B.; Lacôte, E.; Rieger, J.Study of the temperature-induced aggregation of polyoxometalate-poly(N,N-diethylacrylamide) hybrids in water. Polymer, 2015, 57, 173-182.
0
浏览量
53
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构