浏览全部资源
扫码关注微信
1.山西铁道职业技术学院,太原 030013
2.山西省应用化学研究所,太原 030027
*马小龙,E-mail: mxlilf@163.com
纸质出版日期:2024-11-20,
网络出版日期:2024-08-13,
收稿日期:2024-06-13,
录用日期:2024-07-17
移动端阅览
刘美琴, 赵玉梅, 石红翠, 马小龙. 非异氰酸酯聚氨酯的合成与功能性研究进展. 高分子通报, 2024, 37(11), 1570–1580
Liu, M. Q.; Zhao, Y. M.; Shi, H. C.; Ma, X. L. Advances in synthesis and functionality of non-isocyanate polyurethane. Polym. Bull. (in Chinese), 2024, 37(11), 1570–1580
刘美琴, 赵玉梅, 石红翠, 马小龙. 非异氰酸酯聚氨酯的合成与功能性研究进展. 高分子通报, 2024, 37(11), 1570–1580 DOI: 10.14028/j.cnki.1003-3726.2024.24.177.
Liu, M. Q.; Zhao, Y. M.; Shi, H. C.; Ma, X. L. Advances in synthesis and functionality of non-isocyanate polyurethane. Polym. Bull. (in Chinese), 2024, 37(11), 1570–1580 DOI: 10.14028/j.cnki.1003-3726.2024.24.177.
近年来,非异氰酸酯聚氨酯(NIPU)的研究重点已经不单是探索可靠的合成路线,功能性NIPU逐渐成为新的研究热点之一。本文首先总结了NIPU的4种合成方法,介绍了各方法的特点,其中环碳酸酯开环法以其高效、便利的特点,在生物基NIPU、功能性NIPU中被广泛采用。之后,文章重点探讨了NIPU在自修复、可再加工性、形状记忆和水性化等功能性研究方面的进展,这些功能性研究不仅提升了NIPU在可持续发展以及环境安全等方面的优势,也增加了NIPU技术落地的可能性。
In recent years
the research focusing on non-isocyanate polyurethanes (NIPUs) has shifted from exploring reliable synthesis routes to the exploration of functional NIPUs
which has become a new research hotspot. This review summarizes four synthesis methods of NIPUs and introduces the characteristics of each method. Among them
the ring-opening approach of cyclic carbonates has been widely adopted in the synthesis of bio-based NIPUs and functional NIPUs due to its high efficiency and convenience. Subsequently
the review focuses on the progress of NIPU research in functional aspects such as self-healing
reprocessability
shape memory
and water-based formulations. These studies not only enhance the advantages of NIPUs in sustainable development and environmental safety but also increase the feasibility of NIPU technology implementation.
非异氰酸酯聚氨酯合成功能性
Non-isocyanate polyurethaneSynthesisFunctionality
Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J.Polyurethanes: versatile materials and sustainable problem solvers for today's challenges. Angew. Chem. Int. Ed., 2013, 52(36), 9422-9441.
Boiteux, G.; Cuvé, L.; Pascault, J. P.Synthesis and properties of polyurethanes based on polyolefin: 3. Monitoring of phase separation by dielectric relaxation spectroscopy of segmented semicrystalline polyurethane prepared in bulk by the use of emulsifiers. Polymer, 1994, 35(1), 173-178.
Wang, Y. Z.; Hsu, Y. C.; Wu, R. R.; Kao, H. M.Synthesis and structure properties of polyurethane based conducting copolymer I. 13C NMR analysis. Synth. Met., 2003, 132(2), 151-160.
Suryawanshi, Y.; Sanap, P.; Wani, V.Advances in the synthesis of non-isocyanate polyurethanes. Polym. Bull., 2019, 76(6), 3233-3246.
Kiester, E.An Incomplete History of World War I. London: Murdoch Books, 2007, 74-75.
海春旭. 急性光气中毒机制与防护研究进展. 毒理学杂志, 2007, 21(5), 371-376.
赵玉梅, 张博, 刘美琴, 石红翠. 氨基甲酸酯基/脲键对混合TDI聚酯-聚氨酯树脂羰基氢键作用的影响. 高分子通报, 2023, 36(3), 355-365.
董忍娥, 孙琳琳, 乔勋, 马吉胜. 一种新型环保非异氰酸酯聚氨酯丙烯酸酯胶粘剂性能初探. 高分子通报, 2019, (6), 36-44.
靳东杰, 刘治猛, 哈成勇. 聚丙烯酸酯改性水性聚氨酯的制备. 高分子通报, 2003, (1), 71-77.
Schmidt, S.; Gatti, F. J.; Luitz, M.; Ritter, B. S.; Bruchmann, B.; Mülhaupt, R.Erythritol dicarbonate as intermediate for solvent- and isocyanate-free tailoring of bio-based polyhydroxyurethane thermoplastics and thermoplastic elastomers. Macromolecules, 2017, 50(6), 2296-2303.
Du, Y.; Kong, D. L.; Wang, H. Y.; Cai, F.; Tian, J. S.; Wang, J. Q.; He, L. N.Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J. Mol. Catal. A Chem., 2005, 241(1-2), 233-237.
Long, G. C.; Su, K.; Dong, H. N.; Zhao, T. X.; Yang, C. L.; Liu, F.; Hu, X. B.Straightforward construction of amino-functionalized ILs@SBA-15 catalysts via mechanochemical grafting for one-pot synthesis of cyclic carbonates from aromatic olefins and CO2. J. CO2 Util., 2022, 59, 101962.
Guidi, S.; Calmanti, R.; Noè, M.; Perosa, A.; Selva, M.Thermal (catalyst-free) transesterification of diols and glycerol with dimethyl carbonate: a flexible reaction for batch and continuous-flow applications. ACS Sustain. Chem. Eng., 2016, 4(11), 6144-6151.
Naik, P.; Petitjean, L.; Refes, K.; Picquet, M.; Plasseraud, L.Imidazolium-2-carboxylate as an efficient, expeditious and eco-friendly organocatalyst for glycerol carbonate synthesis. Adv. Synth. Catal., 2009, 351(11-12), 1753-1756.
王彩. 环碳酸酯及非异氰酸酯聚氨酯合成新工艺与性能研究. 广州: 华南理工大学, 2018.
Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C.Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv., 2013, 3(13), 4110-4129.
Bürgel, T.; Fedtke, M.Reactions of cyclic carbonates with amines: Model studies for curing process. Polym. Bull., 1991, 27(2), 171-177.
Tomita, H.; Sanda, F.; Endo, T.Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J. Polym. Sci. A Polym. Chem., 2001, 39(6), 851-859.
Cornille, A.; Dworakowska, S.; Bogdal, D.; Boutevin, B.; Caillol, S.A new way of creating cellular polyurethane materials: NIPU foams. Eur. Polym. J., 2015, 66, 129-138.
Schimpf, V.; Ritter, B. S.; Weis, P.; Parison, K.; Mülhaupt, R.High purity limonene dicarbonate as versatile building block for sustainable non-isocyanate polyhydroxyurethane thermosets and thermoplastics. Macromolecules, 2017, 50(3), 944-955.
Mhatre, S. V.; Mahajan, J. S.; Epps, T. H.; Korley, L. T. J.Lignin-derivable alternatives to petroleum-derived non-isocyanate polyurethane thermosets with enhanced toughness. Mater. Adv., 2023, 4(1), 110-121.
Wang, T. Y.; Deng, H. H.; Li, N.; Xie, F.; Shi, H. B.; Wu, M. T.; Zhang, C. Q.Mechanically strong non-isocyanate polyurethane thermosets from cyclic carbonate linseed oil. Green Chem., 2022, 24(21), 8355-8366.
Mahendran, A. R.; Aust, N.; Wuzella, G.; Müller, U.; Kandelbauer, A.Bio-based non-isocyanate urethane derived from plant oil. J. Polym. Environ., 2012, 20(4), 926-931.
Karami, Z.; Kabiri, K.; Zohuriaan-Mehr, M. J.Non-isocyanate polyurethane thermoset based on a bio-resourced star-shaped epoxy macromonomer in comparison with a cyclocarbonate fossil-based epoxy resin: a preliminary study on thermo-mechanical and antibacterial properties. J. CO2 Util., 2019, 34, 558-567.
Tamami, B.; Sohn, S.; Wilkes, G. L.Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J. Appl. Polym. Sci., 2004, 92(2), 883-891.
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C.CO2-Sourced α-Alkylidene cyclic carbonates: a step forward in the quest for functional regioregular poly(urethane)s and poly(carbonate)S. Angew. Chem. Int. Ed., 2017, 56(35), 10394-10398.
Tomita, H.; Sanda, F.; Endo, T.Polyaddition of bis(seven-membered cyclic carbonate) with diamines: a novel and efficient synthetic method for polyhydroxyurethanes. J. Polym. Sci. Part A Polym. Chem., 2001, 39(23), 4091-4100.
Cornille, A.; Blain, M.; Auvergne, R.; Andrioletti, B.; Boutevin, B.; Caillol, S.A study of cyclic carbonate aminolysis at room temperature: effect of cyclic carbonate structures and solvents on polyhydroxyurethane synthesis. Polym. Chem., 2017, 8(3), 592-604.
Jehanno, C.; Demarteau, J.; Mantione, D.; Arno, M. C.; Ruipérez, F.; Hedrick, J. L.; Dove, A. P.; Sardon, H.Synthesis of functionalized cyclic carbonates through commodity polymer upcycling. ACS Macro Lett., 2020, 9(4), 443-447.
McGuire, T. M.; López-Vidal, E. M.; Gregory, G. L.; Buchard, A.Synthesis of 5- to 8-membered cyclic carbonates from diols and CO2: a one-step, atmospheric pressure and ambient temperature procedure. J. CO2 Util., 2018, 27, 283-288.
Yuen, A.; Bossion, A.; Gómez-Bengoa, E.; Ruipérez, F.; Isik, M.; Hedrick, J. L.; Mecerreyes, D.; Yang, Y. Y.; Sardon, H.Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates. Polym. Chem., 2016, 7(11), 2105-2111.
孙大雷, 叶嘉辉, 许立力, 方岩雄. 二氧化碳、正丁胺和醇“一步法” 合成氨基甲酸酯的热力学分析. 精细石油化工, 2015, 32(4), 44-49.
张学舟. 聚氨酯的绿色合成工艺研究. 上海: 华东理工大学, 2011.
Chen, Z. L.; Hadjichristidis, N.; Feng, X. S.; Gnanou, Y.Poly(urethane-carbonate)s from carbon dioxide. Macro-molecules, 2017, 50(6), 2320-2328.
Marsini, M. A.; Buono, F. G.; Lorenz, J. C.; Yang, B. S.; Reeves, J. T.; Sidhu, K.; Sarvestani, M.; Tan, Z. L.; Zhang, Y. D.; Li, N.; Lee, H.; Brazzillo, J.; Nummy, L. J.; Chung, J. C.; Luvaga, I. K.; Narayanan, B. A.; Wei, X. D.; Song, J. J.; Roschangar, F.; Yee, N. K.; Senanayake, C. H.Development of a concise, scalable synthesis of a CCR1 antagonist utilizing a continuous flow Curtius rearrangement. Green Chem., 2017, 19(6), 1454-1461.
Dai, Y. Q.; Pang, H.; Huang, J. H.; Yang, Y.; Huang, H.; Wang, K.; Ma, Z.; Liao, B.Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement. RSC Adv., 2016, 6(41), 34514-34520.
Zhang, D. P.; Zhang, Y.; Fan, Y. J.; Rager, M. N.; Guérineau, V.; Bouteiller, L.; Li, M. H.; Thomas, C. M.Polymerization of cyclic carbamates: a practical route to aliphatic polyurethanes. Macromolecules, 2019, 52(7), 2719-2724.
Ihata, O.; Kayaki, Y.; Ikariya, T.Synthesis of thermoresponsive polyurethane from 2‐methylaziridine and supercritical carbon dioxide. Angew. Chem., 2004, 116(6), 735-737.
黄晓文, 张士玉, 赵凯锋, 白亚朋, 魏燕彦. 含双硫键的自修复交联聚氨酯弹性体的合成与性能. 高分子通报, 2018, (5), 67-72.
Bossion, A.; Olazabal, I.; Aguirresarobe, R. H.; Marina, S.; Martín, J.; Irusta, L.; Taton, D.; Sardon, H.Synthesis of self-healable waterborne isocyanate-free poly(hydroxyurethane)-based supramolecular networks by ionic interactions. Polym. Chem., 2019, 10(21), 2723-2733.
Wang, D. W.; Chen, S.; Zhao, J. B.; Zhang, Z. Y.Synthesis and characterization of self-healing cross-linked non-isocyanate polyurethanes based on Diels-Alder reaction with unsaturated polyester. Mater. Today Commun., 2020, 23, 101138.
Dong, J. C.; Liu, B. Y.; Ding, H. N.; Shi, J. B.; Liu, N.; Dai, B.; Kim, I.Bio-based healable non-isocyanate polyurethanes driven by the cooperation of disulfide and hydrogen bonds. Polym. Chem., 2020, 11(47), 7524-7532.
田丽蓉, 杨莉, 王占华, 夏和生. 含双重动态键的可重加工及室温自修复聚氨酯弹性体. 高分子学报, 2019, 50(5), 527-534.
Fortman, D. J.; Brutman, J. P.; Hillmyer, M. A.; Dichtel, W. R.Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. J. Appl. Polym. Sci., 2017, 134(45), e44984.
Hu, S. M.; Chen, X.; Torkelson, J. M.Biobased reprocessable polyhydroxyurethane networks: Full recovery of crosslink density with three concurrent dynamic chemistries. ACS Sustain. Chem. Eng., 2019, 7(11), 10025-10034.
Schimpf, V.; Heck, B.; Reiter, G.; Mülhaupt, R.Triple-shape memory materials thermoresponsive behavior of nanocrystalline non-isocyanate polyhydroxyurethanes. Macromolecules, 2017, 50(9), 3598-3606.
Magliozzi, F.; Scali, A.; Chollet, G.; Montarnal, D.; Grau, E.; Cramail, H.Hydrolyzable biobased polyhydroxyurethane networks with shape memory behavior at body temperature. ACS Sustain. Chem. Eng., 2020, 8(24), 9125-9135.
Adeel, M.; Zhao, B. J.; Li, L.; Zheng, S. X.Nanocomposites of poly(hydroxyurethane)s with multiwalled carbon nanotubes: synthesis, shape memory, and reprocessing properties. ACS Appl. Polym. Mater., 2020, 2(4), 1711-1721.
吕维忠, 涂伟萍, 陈焕钦. 单组分阴离子水性聚氨酯. 高分子通报, 2001, (6), 60-65.
闫泽群, 黄岐善, 喻建明, 付志峰. 高性能水性聚氨酯研究进展. 高分子通报, 2008, (9), 20-29.
Ochiai, B.; Satoh, Y.; Endo, T.Nucleophilic polyaddition in water based on chemo-selective reaction of cyclic carbonate with amine. Green Chem., 2005, 7(11), 765-767.
Nohra, B.; Candy, L.; Blanco, J. F.; Raoul, Y.; Mouloungui, Z.Aminolysis reaction of glycerol carbonate in organic and hydroorganic medium. J. Am. Oil Chem. Soc., 2012, 89(6), 1125-1133.
Ma, S.; Chen, C.; Sablong, R. J.; Koning, C. E.; Benthem, R. A. T. M.Non-isocyanate strategy for anionically stabilized water‐borne polyurea dispersions and coatings. J. Polym. Sci., Part A: Polym. Chem., 2018, 56(10), 1078-1090.
Ma, S.; Zhang, H. Y.; Sablong, R. J.; Koning, C. E.; van Benthem, Rolf A. T. M.t-Butyl-oxycarbonylated diamines as building blocks for isocyanate-free polyurethane/urea dispersions and coatings. Macromol. Rapid Commun., 2018, 39(9), 1800004.
Zhang, C.; Wang, H. R.; Zhou, Q. X.Waterborne isocyanate-free polyurethane epoxy hybrid coatings synthesized from sustainable fatty acid diamine. Green Chem., 2020, 22(4), 1329-1337.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构