浏览全部资源
扫码关注微信
重庆理工大学药学与生物工程学院,重庆 400054
*陈国宝,E-mail: gbchen@cqut.edu.cn
纸质出版日期:2024-12-20,
网络出版日期:2024-09-12,
收稿日期:2024-06-15,
录用日期:2024-08-17
移动端阅览
雷敏, 张苗, 尹诗韵, 孙中涛, 刘心雨, 付开秀, 牛晓, 陈国宝. 脱细胞肝基质复合丝素蛋白水凝胶支架的制备及表征. 高分子通报, 2024, 37(12), 1791–1800
Lei, M.; Zhang, M.; Yin, S. Y.; Sun, Z. T.; Liu X. Y.; Fu, K. X.; Niu, X.; Chen, G. B. Preparation and characterization of decellularized liver matrix composite silk fibroin hydrogel scaffold. Polym. Bull. (in Chinese), 2024, 37(12), 1791–1800
雷敏, 张苗, 尹诗韵, 孙中涛, 刘心雨, 付开秀, 牛晓, 陈国宝. 脱细胞肝基质复合丝素蛋白水凝胶支架的制备及表征. 高分子通报, 2024, 37(12), 1791–1800 DOI: 10.14028/j.cnki.1003-3726.2024.24.179.
Lei, M.; Zhang, M.; Yin, S. Y.; Sun, Z. T.; Liu X. Y.; Fu, K. X.; Niu, X.; Chen, G. B. Preparation and characterization of decellularized liver matrix composite silk fibroin hydrogel scaffold. Polym. Bull. (in Chinese), 2024, 37(12), 1791–1800 DOI: 10.14028/j.cnki.1003-3726.2024.24.179.
近年来,脱细胞基质在组织工程中展现出巨大应用潜力,但如何改善其力学性能仍然是一个问题。为了探究引入丝素蛋白(silk fibroin
SF)改善脱细胞肝基质(decellularized liver matrix
DLM)力学性能的复合水凝胶支架用于肝组织工程的潜能,对大鼠肝脏进行脱细胞处理后,与SF溶液按等浓度不同体积比例混合交联,制成4组SF/DLM复合支架,SF与DLM溶液的比例分别为100:0、75:25、50:50、25:75,并对支架的形态结构、体外降解性、亲水性、力学性能和细胞相容性等进行了表征。研究结果表明SF能够改善复合支架的力学性能,SF比例的增加使支架的孔隙率和抗压强度提高,支架的降解性能和亲水性能得到提升,结合DLM的促细胞生成功能,该复合支架有望应用于肝修复组织工程。
In recent years
decellularized matrix has shown great potential in tissue engineering
but how to improve its mechanical properties is still a problem. In order to explore the potential of using a composite hydrogel scaffold with silk fibroin (SF) to improve the mechanical properties of decellularized liver matrix (DLM) for liver tissue engineering
four groups of SF/DLM composite scaffolds were prepared by cross-linking the rat liver with SF solution at the same concentration and different volume proportions. The proportions of SF to DLM solution were 100:0
75:25
50:50
25:75
respectively. The morphological structure
in vitro
degradability
hydrophilicity
mechanical properties and cell compatibility of the scaffolds were characterized. The results showed that SF could improve the mechanical properties of the composite scaffold
the porosity
pressure resistance
degradability and hydrophilicity of the scaffold were all improved. Combined with the cell promoting function of DLM
the composite scaffold is expected to be applied in liver r
epair tissue engineering.
支架材料脱细胞基质丝素蛋白肝组织工程
Scaffold materialDecellularized matrixSilk fibroinLiver tissue engineering
Vazirzadeh, M.; Azarpira, N.; Davoodi, P.; Vosough, M.; Ghaedi, K. Natural scaffolds used for liver regeneration: a narrative update. Stem Cell Rev. Rep., 2022, 18(7), 2262–2278.
Uygun, B. E.; Soto-Gutierrez, A.; Yagi, H.; Izamis, M. L.; Guzzardi, M. A.; Shulman, C.; Milwid, J.; Kobayashi, N.; Tilles, A.; Berthiaume, F.; Hertl, M.; Nahmias, Y.; Yarmush, M. L.; Uygun, K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med., 2010, 16(7), 814–820.
Mazza, G.; Rombouts, K.; Rennie Hall, A.; Urbani, L.; Vinh Luong, T.; Al-Akkad, W.; Longato, L.; Brown, D.; Maghsoudlou, P.; Dhillon, A. P.; Fuller, B.; Davidson, B.; Moore, K.; Dhar, D.; de Coppi, P.; Malago, M.; Pinzani, M. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci. Rep., 2015, 5, 13079.
Agarwal, T.; Narayan, R.; Maji, S.; Ghosh, S. K.; Maiti, T. K. Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. J. Tissue Eng. Regen. Med., 2018, 12(3), e1678–e1690.
Lewis, P. L.; Su, J.; Yan, M.; Meng, F. Y.; Glaser, S. S.; Alpini, G. D.; Green, R. M.; Sosa-Pineda, B.; Shah, R. N. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci. Rep., 2018, 8(1), 12220.
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci., 2011, 2011, 290602.
Pati, F.; Jang, J.; Ha, D. H.; Kim, S. W.; Rhie, J. W.; Shim, J. H.; Kim, D. H.; Cho, D. W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun., 2014, 5, 3935.
Juhasz, I.; Kiss, B.; Lukacs, L.; Erdei, I.; Peter, Z.; Remenyik, E. Long-term followup of dermal substitution with acellular dermal implant in burns and postburn scar corrections. Dermatol. Res. Pract., 2010, 2010, 210150.
Jiang, W.; Zhang, X.; Yu, S.; Yan, F.; Chen, J.; Liu, J.; Dong, C. Decellularized extracellular matrix in the treatment of spinal cord injury. Exp. Neurol., 2023, 368, 114506.
Badylak, S. F.; Tullius, R.; Kokini, K.; Shelbourne, K. D.; Klootwyk, T.; Voytik, S. L.; Kraine, M. R.; Simmons, C. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J. Biomed. Mater. Res., 1995, 29(8), 977–985.
Ott, H. C.; Matthiesen, T. S.; Goh, S. K.; Black, L. D.; Kren, S. M.; Netoff, T. I.; Taylor, D. A. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med., 2008, 14(2), 213–221.
Macchiarini, P.; Jungebluth, P.; Go, T.; Adelaide Asnaghi, M.; Rees, L. E.; Cogan, T. A.; Dodson, A.; Martorell, J.; Bellini, S.; Parnigotto, P. P.; Dickinson, S. C.; Hollander, A. P.; Mantero, S.; Conconi, M. T.; Birchall, M. A. Clinical transplantation of a tissue-engineered airway. Lancet, 2008, 372(9655), 2023–2030.
Basonbul, R. A.; Cohen, M. S. Use of porcine small intestinal submucosa for pediatric endoscopic tympanic membrane repair. World J. Otorhinol. Head Neck Surg., 2017, 3(3), 142–147.
Mahbub, M. S. I.; Bae, S. H.; Gwon, J. G.; Lee, B. T. Decellularized liver extracellular matrix and thrombin loaded biodegradable TOCN/chitosan nanocomposite for hemostasis and wound healing in rat liver hemorrhage model. Int. J. Biol. Macromol., 2023, 225: 1529–1542.
Chu, T. L.; Tripathi, G.; Bae, S. H.; Lee, B. T. In-vitro and in-vivo hemostat evaluation of decellularized liver extra cellular matrix loaded chitosan/gelatin spongy scaffolds for liver injury. Int. J. Biol. Macromol., 2021, 193, 638–646.
Bobrova, M.; Safonova, L.; Efimov, A.; Lyundup, A.; Mozheiko, N.; Agapova, O.; Agapov, I. Scaffolds based on silk fibroin with decellularized rat liver microparticles: investigation of the structure, biological properties and regenerative potential for skin wound healing. Pharmaceutics, 2022, 14(11), 2313.
Sharma, A.; Rawal, P.; Tripathi, D. M.; Alodiya, D.; Sarin, S. K.; Kaur, S.; Ghosh, S. Upgrading hepatic differentiation and functions on 3D printed silk-decellularized liver hybrid scaffolds. ACS Biomater. Sci. Eng., 2021, 7(8), 3861–3873.
Fu, Q.; Xia, B.; Huang, X.; Wang, F. P.; Chen, Z. M.; Chen, G. B. Pro-angiogenic decellularized vessel matrix gel modified by silk fibroin for rapid vascularization of tissue engineering scaffold. J. Biomed. Mater. Res. A, 2021, 109(9), 1701–1713.
Nosar, M. N.; Salehi, M.; Ghorbani, S.; Beiranvand, S. P.; Goodarzi, A.; Azami, M. Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose, 2016, 23(5), 3239–3248.
Pezeshki-Modaress, M.; Zandi, M.; Rajabi, S. Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: an in vitro study. Prog. Biomater., 2018, 7(3), 207–218.
Dhasmana, A.; Singh, L.; Roy, P.; Mishra, N. C. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration. Mater. Sci. Eng. C, 2019, 97, 313–324.
0
浏览量
184
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构