浏览全部资源
扫码关注微信
聚合物复合材料及功能材料教育部重点实验室,广东省高性能树脂基复合材料重点实验室,中山大学绿色化学与分子工程研究院,中山大学化学学院,广州 510275
*章明秋,E-mail: ceszmq@mail.sysu.edu.cn
纸质出版日期:2024-11-20,
网络出版日期:2024-08-09,
收稿日期:2024-06-16,
录用日期:2024-07-14
移动端阅览
张泽平, 容敏智, 章明秋. 外场作用下的自修复功能高分子. 高分子通报, 2024, 37(11), 1503–1523
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Self-healing functional polymers triggered via external stimuli. Polym. Bull. (in Chinese), 2024, 37(11), 1503–1523
张泽平, 容敏智, 章明秋. 外场作用下的自修复功能高分子. 高分子通报, 2024, 37(11), 1503–1523 DOI: 10.14028/j.cnki.1003-3726.2024.24.180.
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Self-healing functional polymers triggered via external stimuli. Polym. Bull. (in Chinese), 2024, 37(11), 1503–1523 DOI: 10.14028/j.cnki.1003-3726.2024.24.180.
含有特定官能团、分子结构或者功能填料的功能高分子材料在电子信息、能源、生物医用等高新技术领域有着广阔的应用前景。由于功能高分子材料在制造和使用过程中,不可避免地会遭受损伤,以及化学成分和分子结构的变化,从而导致功能的衰减甚至丧失。自修复功能高分子可以在一定的外场作用下,通过化学或物理作用,实现非结构功能的恢复,显著提高材料的服役寿命和耐久性。本文综述了机械力、电场、光、微波、磁场、直接加热、湿度/水和化学试剂等外场条件激发的自修复功能高分子的研究进展,并仔细分析了各类激发方法的基本原理、实施过程和特点。在此基础上,进一步讨论了该领域的挑战和发展趋势,希望能推动自修复功能高分子材料的实际应用发展。
Functional polymer materials containing specific functional groups
structures or functional fillers have broad application prospects in the fields of electronic information
energy and biology. During their manufacturing and usage
damage and variations in chemical compositions and molecular structures would inevitably occur
leading to attenuation and even
loss of valuable functionalities. Self-healing functional polymers can achieve the non-structural recovery of functional properties
via
chemical or physical interactions under external stimuli
which significantly improve service life and durability of the materials. The present article reviews the research progress of self-healing functional polymers triggered by external fields such as mechanical force
electric field
light
microwave
magnetic field
direct heating
humidity/water and chemical reagents. Meantime
the basic principles
implementation processes
and characteristics of various excitation methods are carefully analyzed. Based on the above analyses
the challenges and development trend of this emerging field are further discussed
in hope of promoting practical application of self-healing functional polymer materials.
自修复外场作用功能恢复功能高分子高分子复合材料
Self-healingExternal conditionsFunctional restorationFunctional polymersPolymer composite materials
Bergman, S. D.; Wudl, F.Mendable polymers. J. Mater. Chem., 2008, 18(1), 41-62.
Zhang, M. Q.; Rong, M. Z.Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polym. Chem., 2013, 4(18), 4878-4884.
Wang, S.; Urban, M. W.Self-healing polymers. Nat. Rev. Mater., 2020, 5, 562-583.
Zhang, M. Q.; Rong, M. Z.Extrinsic and Intrinsic Approaches to Self-healing Polymers and Polymer Composites. Hoboken: John Wiley & Sons, Inc., 2022.
Luo, C. S.; Wan, P. B.; Yang, H.; Ali Shah, S. A.; Chen, X. D.Healable transparent electronic devices. Adv. Funct. Mater., 2017, 27(23), 1606339
Amendola, V.; Meneghetti, M.Advances in self-healing optical materials. J. Mater. Chem., 2012, 22(47), 24501-24508.
Esteves, C.Self-healing functional surfaces. Adv. Mater. Interfaces, 2018, 5(17), 1800293.
Ahner, J.; Bode, S.; Micheel, M.; Dietzek, B.; Hager, M. D.Self-healing functional polymeric materials. Hager, M. D.; van der Zwaag, S.; Schubert, U. S., eds. Self-healing Materials. Cham: Springer International Publishing, 2015, 247-283.
Song, M. M.; Wang, Y. M.; Liang, X. Y.; Zhang, X. Q.; Zhang, S.; Li, B. J.Functional materials with self-healing properties: a review. Soft Matter, 2019, 15(33), 6615-6625.
Zhu, M.; Rong, M. Z.; Zhang, M. Q.Self-healing polymeric materials towards non-structural recovery of functional properties. Polym. Int., 2014, 63(10), 1741-1749.
Kang, J.; Tok, J. B. H.; Bao, Z.Self-healing soft electronics. Nat. Electron., 2019, 2, 144-150.
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q.Self-healable functional polymers and polymer-based composites. Prog. Polym. Sci., 2023, 144, 101724.
Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Z.Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small, 2018, 14(43), e1702829.
Yuan, Y. C.; Yin, T.; Rong, M. Z.; Zhang, M. Q.Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Express Polym. Lett., 2008, 2(4), 238-250.
Zhu, D. Y.; Rong, M. Z.; Zhang, M. Q.Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog. Polym. Sci., 2015, 49, 175-220.
Wang, K. J.; Amin, K.; An, Z. S.; Cai, Z. X.; Chen, H.; Chen, H. Z.; Dong, Y. P.; Feng, X.; Fu, W. Q.; Gu, J. B.; Han, Y. C.; Hu, D. D.; Hu, R. R.; Huang, D.; Huang, F.; Huang, F. H.; Huang, Y. Z.; Jin, J.; Jin, X.; Li, Q. Q.; Li, T. F.; Li, Z.; Li, Z. B.; Liu, J. G.; Liu, J.; Liu, S. Y.; Peng, H. S.; Qin, A. J.; Qing, X.; Shen, Y. Q.; Shi, J. B.; Sun, X. M.; Tong, B.; Wang, B.; Wang, H.; Wang, L. X.; Wang, S.; Wei, Z. X.; Xie, T.; Xu, C. Y.; Xu, H. P.; Xu, Z. K.; Yang, B.; Yu, Y. L.; Zeng, X.; Zhan, X. W.; Zhang, G. Z.; Zhang, J.; Zhang, M. Q.; Zhang, X. Z.; Zhang, X.; Zhang, Y.; Zhang, Y. Y.; Zhao, C. S.; Zhao, W. F.; Zhou, Y. F.; Zhou, Z. X.; Zhu, J. T.; Zhu, X. Y.; Tang, B. Z.Advanced functional polymer materials. Mater. Chem. Front., 2020, 4(7), 1803-1915.
Ahner, J.; Micheel, M.; Geitner, R.; Schmitt, M.; Popp, J.; Dietzek, B.; Hager, M. D.Self-healing functional polymers: optical property recovery of conjugated polymer films by uncatalyzed imine metathesis. Macromolecules, 2017, 50(10), 3789-3795.
Wang, H. X.; Xue, Y. H.; Ding, J.; Feng, L. F.; Wang, X. G.; Lin, T.Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew. Chem. Int. Ed., 2011, 50(48), 11433-11436.
Chen, K. L.; Wu, Y.; Zhou, S. X.; Wu, L. M.Recent development of durable and self-healing surfaces with special wettability. Macromol. Rapid Commun., 2016, 37(6), 463-485.
Liu, F. T.; Du, H. Z.; Han, Y.; Wang, C. J.; Liu, Z. J.; Wang, H. Y.Recent progress in the fabrication and characteristics of self-repairing superhydrophobic surfaces. Adv. Mater. Interfaces, 2021, 8(17), 2100228.
Wu, Y. P.; Huang, X. K.; Huang, L.; Guo, X. R.; Ren, R.; Liu, D.; Qu, D. Y.; Chen, J. H.Self-healing liquid metal and Si composite as a high-performance anode for lithium-ion batteries. ACS Appl. Energy Mater., 2018, 1(4), 1395-1399.
Qu, X. X.; Niu, W. W.; Wang, R.; Li, Z. Q.; Guo, Y.; Liu, X. K.; Sun, J. Q.Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Mater. Horiz., 2020, 7(11), 2994-3004.
Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B.Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem. Int. Ed., 2022, 61(22), e202200226.
Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y.A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun., 2015, 6, 10310.
Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y.An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem. Int. Ed., 2018, 57(31), 9810-9813.
Zhang, Z. X.; Tang, L.; Chen, C.; Yu, H. T.; Bai, H. H.; Wang, L.; Qin, M. M.; Feng, Y. Y.; Feng, W.Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A, 2021, 9(2), 875-883.
Caruso, M. M.; Schelkopf, S. R.; Jackson, A. C.; Landry, A. M.; Braun, P. V.; Moore, J. S.Microcapsules containing suspensions of carbon nanotubes. J. Mater. Chem., 2009, 19(34), 6093-6096.
Zamal, H. H.; Barba, D.; Aïssa, B.; Haddad, E.; Rosei, F.Recovery of electro-mechanical properties inside self-healing composites through microencapsulation of carbon nanotubes. Sci. Rep., 2020, 10(1), 2973.
Odom, S. A.; Caruso, M. M.; Finke, A. D.; Prokup, A. M.; Ritchey, J. A.; Leonard, J. H.; White, S. R.; Sottos, N. R.; Moore, J. S.Restoration of conductivity with TTF-TCNQ charge-transfer salts. Adv. Funct. Mater., 2010, 20(11), 1721-1727.
Blaiszik, B. J.; Kramer, S. L. B.; Grady, M. E.; McIlroy, D. A.; Moore, J. S.; Sottos, N. R.; White, S. R.Autonomic restoration of electrical conductivity. Adv. Mater., 2012, 24(3), 398-401.
Chu, K. M.; Song, B. G.; Yang, H. I.; Kim, D. M.; Lee, C. S.; Park, M.; Chung, C. M.Smart passivation materials with a liquid metal microcapsule as self-healing conductors for sustainable and flexible perovskite solar cells. Adv. Funct. Mater., 2018, 28(22), 1800110.
Kang, J.; Son, D.; Wang, G. J N.; Liu, Y. X.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L. H.; Tok, J. B. H.; Bao, Z. N.Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater., 2018, 30(13), 1706846.
Palleau, E.; Reece, S.; Desai, S. C.; Smith, M. E.; Dickey, M. D.Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater., 2013, 25(11), 1589-1592.
He, Y. L.; Liao, S. L.; Jia, H. Y.; Cao, Y. Y.; Wang, Z. N.; Wang, Y. P.A self-healing electronic sensor based on thermal-sensitive fluids. Adv. Mater., 2015, 27(31), 4622-4627.
Jia, H. Y.; Tao, X. L.; Wang, Y. P.Flexible and self-healing thermoelectric converters based on thermosensitive liquids at low temperature gradient. Adv. Electron. Mater., 2016, 2(7), 1600136.
Liu, Y. H.; Liu, Y. P.; Hu, H. Y.; Liu, Z. L.; Pei, X. W.; Yu, B.; Yan, P. X.; Zhou, F.Mechanically induced self-healing superhydrophobicity. J. Phys. Chem. C, 2015, 119(13), 7109-7114.
Liu, M. L.; Luo, Y. F.; Jia, D. M.Facile, solvent-free fabrication of a robust 3-dimensional continuous superhydrophobic coating with wettability control and abrasion healing. Chem. Eng. J., 2019, 368, 18-28.
Liu, M. L.; Luo, Y. F.; Jia, D. M.Facile synthesis of composite films featuring bulk superhydrophobicity, durability, and repairability for aquatic show. Compos. Sci. Technol., 2020, 197, 108231.
Chung, C. M.; Roh, Y. S.; Cho, S. Y.; Kim, J. G.Crack healing in polymeric materials via photochemical [2+2]cycloaddition. Chem. Mater., 2004, 16(21), 3982-3984.
Zhang, H.; Li, X.; Lin, Y. J.; Gao, F.; Tang, Z.; Su, P. F.; Zhang, W. K.; Xu, Y. Z.; Weng, W. G.; Boulatov, R.Multi-modal mechanophores based on cinnamate dimers. Nat. Commun., 2017, 8(1), 1147.
Ramachandran, D.; Liu, F.; Urban, M. W.Self-repairable copolymers that change color. RSC Adv., 2012, 2(1), 135-143.
Klukovich, H. M.; Kean, Z. S.; Iacono, S. T.; Craig, S. L.Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J. Am. Chem. Soc., 2011, 133(44), 17882-17888.
Paulusse, J. M. J.; Sijbesma, R. P.Reversible mechanochemistry of a PdII coordination polymer. Angew. Chem. Int. Ed., 2004, 43(34), 4460-4462.
Li, M. X.; Rong, M. Z.; Zhang, M. Q.Reversible mechanochemistry enabled autonomous sustaining of robustness of polymers—an example of next generation self-healing strategy. Chinese J. Polym. Sci., 2021, 39(5), 545-553.
Chuo, T. W.; Wei, T. C.; Liu, Y. L.Electrically driven self-healing polymers based on reversible guest-host complexation of β-cyclodextrin and ferrocene. J. Polym. Sci. Part A Polym. Chem., 2013, 51(16), 3395-3403.
Miao, Y.; Xu, M. D.; Zhang, L. D.Electrochemistry-induced improvements of mechanical strength, self-healing, and interfacial adhesion of hydrogels. Adv. Mater., 2021, 33(40), e2102308.
Lu, J.; Kim, S. G.; Lee, S.; Oh, I. K.A biomimetic actuator based on an ionic networking membrane of poly(styrene-alt-maleimide)-incorporated poly-(vinylidene fluoride). Adv. Funct. Mater., 2008, 18(8), 1290-1298.
Johanson, U.; Punning, A.; Kruusmaa, M.; Aabloo, A.Self healing properties of Cu-Pt coated ionic polymer actuators. Electroactive Polymer Actuators and Devices (EAPAD) 2008, SPIE Proceedings, San Diego, California, 2008, 69271Y.
Pu, W. L.; Fu, D. H.; Wang, Z. H.; Gan, X. P.; Lu, X. L.; Yang, L.; Xia, H. S.Realizing crack diagnosing and self-healing by electricity with a dynamic crosslinked flexible polyurethane composite. Adv. Sci., 2018, 5(5), 1800101.
Fan, L. F.; Rong, M. Z.; Zhang, M. Q.; Chen, X. D.Repeated intrinsic self-healing of wider cracks in polymer via dynamic reversible covalent bonding molecularly combined with a two-way shape memory effect. ACS Appl. Mater. Interfaces, 2018, 10(44), 38538-38546.
Huang, L.; Yi, N. B.; Wu, Y. P.; Zhang, Y.; Zhang, Q.; Huang, Y.; Ma, Y. F.; Chen, Y. S.Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater., 2013, 25(15), 2224-2228.
Willocq, B.; Bose, R. K.; Khelifa, F.; Garcia, S. J.; Dubois, P.; Raquez, J. M.Healing by the Joule effect of electrically conductive poly(ester-urethane)/carbon nanotube nanocomposites. J. Mater. Chem. A, 2016, 4(11), 4089-4097.
Wang, H. M.; Yang, Y.; Zhang, M. C.; Wang, Q.; Xia, K. L.; Yin, Z.; Wei, Y.; Ji, Y.; Zhang, Y. Y.Electricity-triggered self-healing of conductive and thermostable vitrimer enabled by paving aligned carbon nanotubes. ACS Appl. Mater. Interfaces, 2020, 12(12), 14315-14322.
Li, X.; Li, Y.; Guan, T. T.; Xu, F. C.; Sun, J. Q.Durable, highly electrically conductive cotton fabrics with healable superamphiphobicity. ACS Appl. Mater. Interfaces, 2018, 10(14), 12042-12050.
Yang, Y.; He, J. L.; Li, Q.; Gao, L.; Hu, J.; Zeng, R.; Qin, J.; Wang, S. X.; Wang, Q.Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol., 2019, 14(2), 151-155.
Corten, C. C.; Urban, M. W.Repairing polymers using oscillating magnetic field. Adv. Mater., 2009, 21(48), 5011-5015.
Yoonessi, M.; Lerch, B. A.; Peck, J. A.; Rogers, R. B.; Solá-Lopez, F. J.; Meador, M. A.Self-healing of core-shell magnetic polystyrene nanocomposites. ACS Appl. Mater. Interfaces, 2015, 7(31), 16932-16937.
Ahmed, A. S.; Ramanujan, R. V.Magnetic field triggered multicycle damage sensing and self healing. Sci. Rep., 2015, 5, 13773.
Adzima, B. J.; Kloxin, C. J.; Bowman, C. N.Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating. Adv. Mater., 2010, 22(25), 2784-2787.
张泽平, 容敏智, 章明秋. 基于光化学反应的自修复高分子研究现状及展望. 中国科学: 化学, 2024.
Chen, M. S.; Yao, B. J.; Kappl, M.; Liu, S. Y.; Yuan, J. Y.; Berger, R.; Zhang, F. A.; Butt, H. J.; Liu, Y. L.; Wu, S.Entangled azobenzene-containing polymers with photoinduced reversible solid-to-liquid transitions for healable and reprocessable photoactuators. Adv. Funct. Mater., 2020, 30(4), 1906752.
Ling, J.; Rong, M. Z.; Zhang, M. Q.Coumarin imparts repeated photochemical remendability to polyurethane. J. Mater. Chem., 2011, 21(45), 18373-18380.
Banerjee, S.; Tripathy, R.; Cozzens, D.; Nagy, T.; Keki, S.; Zsuga, M.; Faust, R.Photoinduced smart, self-healing polymer sealant for photovoltaics. ACS Appl. Mater. Interfaces, 2015, 7(3), 2064-2072.
Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K.Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed., 2011, 50(7), 1660-1663.
Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K.Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater., 2012, 24(29), 3975-3980.
Li, Y. M.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q.Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv. Mater., 2023, 35, 2211009
Song, Y. X.; Xu, W. M.; Rong, M. Z.; Zhang, M. Q.A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film. J. Mater. Chem. A, 2019, 7(5), 2315-2325.
Liu, C.; Xia, J. H.; Ji, S. B.; Fan, Z. Y.; Xu, H. P.Visible-light-induced metathesis reaction between diselenide and ditelluride. Chem. Commun., 2019, 55(19), 2813-2816.
Fan, W. H.; Jin, Y.; Shi, L. J.; Du, W. N.; Zhou, R.; Lai, S. Q.; Shen, Y. C.; Li, Y. P.Achieving fast self-healing and reprocessing of supertough water-dispersed “living” supramolecular polymers containing dynamic ditelluride bonds under visible light. ACS Appl. Mater. Interfaces, 2020, 12(5), 6383-6395.
Chen, L.; Bisoyi, H. K.; Huang, Y. L.; Huang, S.; Wang, M.; Yang, H.; Li, Q.Healable and rearrangeable networks of liquid crystal elastomers enabled by diselenide bonds. Angew. Chem. Int. Ed., 2021, 60(30), 16394-16398.
Xiang, S. L.; Hua, Q. X.; Zhao, P. J.; Gong, W. L.; Li, C.; Zhu, M. Q.Photoplastic self-healing polyurethane springs and actuators. Chem. Mater., 2019, 31(14), 5081-5088.
Chen, K. L.; Zhou, S. X.; Yang, S.; Wu, L. M.Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv. Funct. Mater., 2015, 25(7), 1035-1041.
Song, Y. K.; Jo, Y. H.; Lim, Y. J.; Cho, S. Y.; Yu, H. C.; Ryu, B. C.; Lee, S. I.; Chung, C. M.Sunlight-induced self-healing of a microcapsule-type protective coating. ACS Appl. Mater. Interfaces, 2013, 5(4), 1378-1384.
Guan, Q. B.; Dai, Y. H.; Yang, Y. Q.; Bi, X. Y.; Wen, Z.; Pan, Y.Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy, 2018, 51, 333-339.
Dai, X. Y.; Huang, L. B.; Du, Y. Z.; Han, J. C.; Zheng, Q. Q.; Kong, J.; Hao, J. H.Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiation. Adv. Funct. Mater., 2020, 30(16), 1910723.
Wu, S. W.; Li, J. H.; Zhang, G. P.; Yao, Y. M.; Li, G.; Sun, R.; Wong, C.Ultrafast self-healing nanocomposites via infrared laser and their application in flexible electronics. ACS Appl. Mater. Interfaces, 2017, 9(3), 3040-3049.
Song, P.; Qin, H. L.; Gao, H. L.; Cong, H. P.; Yu, S. H.Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat. Commun., 2018, 9(1), 2786.
Qin, H. L.; Liu, P.; Chen, C. R.; Cong, H. P.; Yu, S. H.A multi-responsive healable supercapacitor. Nat. Commun., 2021, 12(1), 4297.
Li, Y.; Chen, S. S.; Wu, M. C.; Sun, J. Q.Rapid and efficient multiple healing of flexible conductive films by near-infrared light irradiation. ACS Appl. Mater. Interfaces, 2014, 6(18), 16409-16415.
Kim, K. S.; Bin Choi, S.; Kim, D. U.; Lee, C. R.; Kim, J. W.Photo-induced healing of stretchable transparent electrodes based on thermoplastic polyurethane with embedded metallic nanowires. J. Mater. Chem. A, 2018, 6(26), 12420-12429.
Wu, M. C.; Li, Y.; An, N.; Sun, J. Q.Applied voltage and near-infrared light enable healing of superhydrophobicity loss caused by severe scratches in conductive superhydrophobic films. Adv. Funct. Mater., 2016, 26(37), 6777-6784.
Fan, X. Q.; Ding, Y.; Liu, Y.; Liang, J. J.; Chen, Y. S.Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano, 2019, 13(7), 8124-8134.
Liu, Y. H.; Pei, X. W.; Liu, Z. L.; Yu, B.; Yan, P. X.; Zhou, F.Accelerating the healing of superhydrophobicity through photothermogenesis. J. Mater. Chem. A, 2015, 3(33), 17074-17079.
Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P.Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater., 2015, 27(33), 4889-4894.
Tang, L.; Wang, J.; Zhang, B.; Li, C.; Jin, H. H.Remarkable microwave heating performance of MWCNTs/polypropylene composites verified by electromagnetic-thermal coupling experiment and simulation. Compos. Sci. Technol., 2022, 223, 109428.
Li, J. H.; Zhang, G. P.; Sun, R.; Wong, C. P.A covalently cross-linked reduced functionalized graphene oxide/polyurethane composite based on Diels-Alder chemistry and its potential application in healable flexible electronics. J. Mater. Chem. C, 2017, 5(1), 220-228.
Li, J. H.; Liu, Q.; Ho, D.; Zhao, S. F.; Wu, S. W.; Ling, L.; Han, F.; Wu, X. X.; Zhang, G. P.; Sun, R.; Wong, C. P.Three-dimensional graphene structure for healable flexible electronics based on Diels-Alder chemistry. ACS Appl. Mater. Interfaces, 2018, 10(11), 9727-9735.
Menon, A. V.; Madras, G.; Bose, S.Ultrafast self-healable interfaces in polyurethane nanocomposites designed using Diels-Alder “click” as an efficient microwave absorber. ACS Omega, 2018, 3(1), 1137-1146.
Bai, R. R.; Zhu, H. Z.; Xie, D. Y.; Zhu, Z. H.; Zhong, Q.; Chen, J.; Zhao, H.; Liu, D. Y.Microwave loss percolation effect and microwave self-healing function of FeNip/PP nanocomposites. Compos. Sci. Technol., 2019, 182, 107745.
Ni, Q. Q.; Hong, J.; Xu, P.; Xu, Z. Z.; Khvostunkov, K.; Xia, H.Damage detection of CFRP composites by electromagnetic wave nondestructive testing (EMW-NDT). Compos. Sci. Technol., 2021, 210, 108839.
Li, Z.; Haigh, A.; Saleh, M. N.; McCarthy, E.; Soutis, C.; Gibson, A.; Sloan, R.Detection of impact damage in carbon fiber composites using an electromagnetic sensor. Res. Nondestruct. Eval., 2018, 29, 123-142.
Zhang, Y. L.; Kong, J.; Gu, J. W.New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull., 2022, 67(14), 1413-1415.
Qi, S.; Fu, J.; Xie, Y. P.; Li, Y. P.; Gan, R. Y.; Yu, M.Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity. Compos. Sci. Technol., 2019, 183, 107817.
Bandodkar, A. J.; López, C. S.; Vinu Mohan, A. M.; Yin, L.; Kumar, R.; Wang, J.All-printed magnetically self-healing electrochemical devices. Sci. Adv., 2016, 2(11), e1601465.
Huang, Y.; Huang, Y.; Zhu, M. S.; Meng, W. J.; Pei, Z. X.; Liu, C.; Hu, H.; Zhi, C. Y.Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano, 2015, 9(6), 6242-6251.
Xu, W.; Huang, L. B.; Hao, J. H.Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy, 2017, 40, 399-407.
Maitra, A.; Paria, S.; Karan, S. K.; Bera, R.; Bera, A.; Das, A. K.; Si, S. K.; Halder, L.; De, A.; Khatua, B. B.Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation. ACS Appl. Mater. Interfaces, 2019, 11(5), 5022-5036.
Zhang, H.; Han, H. P.; Xu, X. C.Dynamic and regional constructive electromagnetic protecting materials made by MWNT/Fe3O4/poly pyrrole doped vitrimers. Compos. Sci. Technol., 2018, 158, 61-66.
Kuang, X.; Wu, S.; Ze, Q. J.; Yue, L.; Jin, Y.; Montgomery, S. M.; Yang, F. Y.; Qi, H. J.; Zhao, R. K.Magnetic dynamic polymers for modular assembling and reconfigurable morphing architectures. Adv. Mater., 2021, 33(30), 2102113.
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q.Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci., 2018, 80, 39-93.
Zheng, R. Z.; Zhang, J. Q.; Jia, C. Y.; Wan, Z. Q.; Fan, Y. R.; Weng, X. L.; Xie, J. L.; Deng, L. J.A novel self-healing electrochromic film based on a triphenylamine cross-linked polymer. Polym. Chem., 2017, 8(45), 6981-6988.
Chen, F.; Xiao, H.; Peng, Z. Q.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q.Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv. Compos. Hybrid Mater., 2021, 4(4), 1048-1058.
Yang, Y.; Zhu, B. P.; Yin, D.; Wei, J. H.; Wang, Z. Y.; Xiong, R.; Shi, J.; Liu, Z. Y.; Lei, Q. Q.Flexible self-healing nanocomposites for recoverable motion sensor. Nano Energy, 2015, 17, 1-9.
Chen, F.; Pang, X. Y.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q.Thermally conductive, healable glass fiber cloth reinforced polymer composite based on β-hydroxyester bonds crosslinked epoxy with improved heat resistance. Chinese J. Polym. Sci., 2024, 42(5), 643-654.
Yang, X. T.; Zhong, X.; Zhang, J. L.; Gu, J. W.Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J. Mater. Sci. Technol., 2021, 68, 209-215.
Menon, A. V.; Madras, G.; Bose, S.Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J., 2019, 366, 72-82.
Deng, J. N.; Kuang, X.; Liu, R. Y.; Ding, W. B.; Wang, A. C.; Lai, Y. C.; Dong, K.; Wen, Z.; Wang, Y. X.; Wang, L. L.; Qi, H. J.; Zhang, T.; Wang, Z. L.Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater., 2018, 30(14), 1705918.
AbdolahZadeh, M.; Esteves, A. C. C.; van der Zwaag, S.; Garcia, S. J.Healable dual organic-inorganic crosslinked sol-gel based polymers: crosslinking density and tetrasulfide content effect. J. Polym. Sci. Part A Polym. Chem., 2014, 52(14), 1953-1961.
Zhong, N.; Garcia, S. J.; van der Zwaag, S.The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix. Smart Mater. Struct., 2016, 25(8), 084016.
Parida, K.; Thangavel, G.; Cai, G. F.; Zhou, X. R.; Park, S.; Xiong, J. Q.; Lee, P. S.Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun., 2019, 10(1), 2158.
Ko, J.; Kim, Y. J.; Kim, Y. S.Self-healing polymer dielectric for a high capacitance gate insulator. ACS Appl. Mater. Interfaces, 2016, 8(36), 23854-23861.
Rong, Q. F.; Lei, W. W.; Chen, L.; Yin, Y. A.; Zhou, J. J.; Liu, M. J.Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed., 2017, 56(45), 14159-14163.
Xing, L. X.; Li, Q.; Zhang, G. Z.; Zhang, X. S.; Liu, F. H.; Liu, L.; Huang, Y. D.; Wang, Q.Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv. Funct. Mater., 2016, 26(20), 3524-3531.
Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C.A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater., 2017, 29, 1605099.
Lafont, U.; van Zeijl, H.; van der Zwaag, S.Increasing the reliability of solid state lighting systems via self-healing approaches: a review. Microelectron. Reliab., 2012, 52(1), 71-89.
Guo, K.; Zhang, D. L.; Zhang, X. M.; Zhang, J.; Ding, L. S.; Li, B. J.; Zhang, S.Conductive elastomers with autonomic self-healing properties. Angew. Chem. Int. Ed., 2015, 54(41), 12127-12133.
Guo, K.; Lin, M. S.; Feng, J. F.; Pan, M.; Ding, L. S.; Li, B. J.; Zhang, S.The deeply understanding of the self-healing mechanism for self-healing behavior of supramolecular materials based on cyclodextrin-guest interactions. Macromol. Chem. Phys., 2017, 218(10), 1600593.
Guo, W. J.; Li, X.; Xu, F. C.; Li, Y.; Sun, J. Q.Transparent polymeric films capable of healing millimeter-scale cuts. ACS Appl. Mater. Interfaces, 2018, 10(15), 13073-13081.
Li, Y.; Chen, S. S.; Wu, M. C.; Sun, J. Q.Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv. Mater., 2012, 24(33), 4578-4582.
Bai, S. L.; Sun, C. Z.; Yan, H.; Sun, X. M.; Zhang, H.; Luo, L.; Lei, X. D.; Wan, P. B.; Chen, X. D.Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small, 2015, 11(43), 5807-5813.
Zhang, S. M.; Cicoira, F.Water-enabled healing of conducting polymer films. Adv. Mater., 2017, 29(40), 1703098.
Kayser, L.; Russell, M. D.; Rodriquez, D.; Abuhamdieh, S. N.; Dhong, C.; Khan, S.; Stein, A. N.; Ramírez, J.; Lipomi, D. J.RAFT polymerization of an intrinsically stretchable water-soluble block copolymer scaffold for PEDOT. Chem. Mater., 2018, 30(13), 4459-4468.
Zhang, S. M.; Chen, Y. H.; Liu, H.; Wang, Z. T.; Ling, H. N.; Wang, C. S.; Ni, J. H.; Çelebi-Saltik, B.; Wang, X. C.; Meng, X.; Kim, H. J.; Baidya, A.; Ahadian, S.; Ashammakhi, N.; Dokmeci, M. R.; Travas-Sejdic, J.; Khademhosseini, A.Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv. Mater., 2020, 32(1), e1904752.
Ko, J.; Wu, X. H.; Surendran, A.; Muhammad, B. T.; Leong, W. L.Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces, 2020, 12(30), 33979-33988.
Su, X. Q.; Wu, X. H.; Chen, S.; Nedumaran, A. M.; Stephen, M.; Hou, K. Q.; Czarny, B.; Leong, W. L.A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater., 2022, 34(19), 2200682.
Cai, Y. H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M.Self-healing and superwettable nanofibrous membranes for efficient separation of oil-in-water emulsions. J. Mater. Chem. A, 2019, 7(4), 1629-1637.
Wang, Z. H.; van Andel, E.; Pujari, S. P.; Feng, H. H.; Dijksman, J. A.; Smulders, M. M. J.; Zuilhof, H.Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mater. Chem. B, 2017, 5(33), 6728-6733.
Wang, Z. H.; Fei, G. X.; Xia, H. S.; Zuilhof, H.Dual water-healable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mater. Chem. B, 2018, 6(43), 6930-6935.
Li, Y.; Li, L.; Sun, J. Q.Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed., 2010, 49(35), 6129-6133.
Chen, S. S.; Li, X.; Li, Y.; Sun, J. Q.Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano, 2015, 9(4), 4070-4076.
Wang, X.; Liu, F.; Zheng, X.; Sun, J.Water-enabled self-healing of polyelectrolyte multilayer coatings. Angew. Chem. Int. Ed., 2011, 50(48), 11378-11381.
Hu, B.; Chen, L. Z.; Lan, S.; Ren, P.; Wu, S.; Liu, X. H.; Shi, X. W.; Li, H. B.; Du, Y. M.; Ding, F. Y.Layer-by-layer assembly of polysaccharide films with self-healing and antifogging properties for food packaging applications. ACS Appl. Nano Mater., 2018, 1(7), 3733-3740.
Ren, J. Y.; Xuan, H. Y.; Ge, L. Q.Colorful self-healing polyelectrolyte nano-film based on Schiff base linkage capable of sensing. Eur. Polym. J., 2017, 93, 521-529.
李苗苗, 吕全乾, 朱锦涛, 张连斌. 基于聚硼硅氧烷的自愈合光子晶体弹性体. 高分子学报, 2019, 50(3), 271-280.
Guan, Q. B.; Lin, G. H.; Gong, Y. Z.; Wang, J. F.; Tan, W. Y.; Bao, D. Q.; Liu, Y. N.; You, Z. W.; Sun, X. H.; Wen, Z.; Pan, Y.Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A, 2019, 7(23), 13948-13955.
Si, Y. F.; Zhu, H.; Chen, L. W.; Jiang, T.; Guo, Z. G.A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties. Chem. Commun., 2015, 51(94), 16794-16797.
Fu, F. F.; Chen, Z. Y.; Zhao, Z.; Wang, H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J.Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. USA, 2017, 114(23), 5900-5905.
Zhang, X.; Xu, J. Y.; Lang, C.; Qiao, S. P.; An, G.; Fan, X. T.; Zhao, L. L.; Hou, C. X.; Liu, J. Q.Enzyme-regulated fast self-healing of a pillararene-based hydrogel. Biomacromolecules, 2017, 18(6), 1885-1892.
Wang, R.; Li, Q.; Chi, B.; Wang, X. Q.; Xu, Z.; Xu, Z. Q.; Chen, S.; Xu, H.Enzyme-induced dual-network ε-poly-L-lysine-based hydrogels with robust self-healing and antibacterial performance. Chem. Commun., 2017, 53(35), 4803-4806.
Weng, D. H.; Xu, F. C.; Li, X.; Li, Y.; Sun, J. Q.Bioinspired photothermal conversion coatings with self-healing superhydrophobicity for efficient solar steam generation. J. Mater. Chem. A, 2018, 6(47), 24441-24451.
Yuan, S. J.; Peng, Z. Q.; Rong, M. Z.; Zhang, M. Q.Enhancement of intrinsic thermal conductivity of liquid crystalline epoxy through the strategy of interlocked polymer networks. Mater. Chem. Front., 2022, 6(9), 1137-1149.
Kim, S. H.; Seo, H.; Kang, J.; Hong, J.; Seong, D.; Kim, H. J.; Kim, J.; Mun, J.; Youn, I.; Kim, J.; Kim, Y. C.; Seok, H. K.; Lee, C.; Tok, J. B. H.; Bao, Z. N.; Son, D.An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano, 2019, 13(6), 6531-6539.
Xie, Z. H.; Huang, Z. X.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q.Imparting pulley effect and self-healability to cathode binder of Li-S battery for improvement of the cycling stability. ChineseJ. Polym. Sci., 2023, 41(1), 95-107.
Huang, Z. X.; Xie, Z. H.; Zhang, Z. P.; Zhang, T.; Rong, M. Z.; Zhang, M. Q.Highly ionic conductive, self-healable solid polymer electrolyte based on reversibly interlocked macromolecule networks for lithium metal batteries workable at room temperature. J. Mater. Chem. A, 2022, 10(36), 18895-18906.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构