浏览全部资源
扫码关注微信
1.武汉理工大学化学化工与生命科学学院,武汉 430070
2.武汉理工大学材料科学与工程学院, 武汉 430070
3.武汉理工大学艾克斯马赛学院,武汉 430070
*张甜,E-mail: tzhang@whut.edu.cn
纸质出版日期:2024-12-20,
网络出版日期:2024-08-28,
收稿日期:2024-06-18,
录用日期:2024-08-07
移动端阅览
余金珂, 蒋向阳, 张珏, 喻勤, 张甜. 改性纳米纤维素在重金属离子吸附中的研究进展. 高分子通报, 2024, 37(12), 1757–1767
Yu, J. K.; Jiang, X. Y.; Zhang, J.; Yu, Q.; Zhang, T. Research progress on the adsorption of heavy metal ions by modified nanocellulose. Polym. Bull. (in Chinese), 2024, 37(12), 1757–1767
余金珂, 蒋向阳, 张珏, 喻勤, 张甜. 改性纳米纤维素在重金属离子吸附中的研究进展. 高分子通报, 2024, 37(12), 1757–1767 DOI: 10.14028/j.cnki.1003-3726.2024.24.181.
Yu, J. K.; Jiang, X. Y.; Zhang, J.; Yu, Q.; Zhang, T. Research progress on the adsorption of heavy metal ions by modified nanocellulose. Polym. Bull. (in Chinese), 2024, 37(12), 1757–1767 DOI: 10.14028/j.cnki.1003-3726.2024.24.181.
随着工业化和城市化的快速发展,水资源重金属污染问题持续加剧,威胁着人类和生态系统健康。详细讨论了四种主要的改性纳米纤维素的方法在重金属离子吸附中的应用,包括氧化改性、酯化改性、醚化改性和接枝共聚改性。这些改性方法通过增加纳米纤维素表面的官能团,显著提高了其对重金属离子的吸附能力。最后,文章对改性纳米纤维素在重金属离子吸附方面的未来研究方向进行了展望,强调了选择性、降低成本、提高吸附效率和可持续性的重要性。
With the rapid advancement of industrialization and urbanization
the issue of heavy metal pollution in water resources has been increasingly exacerbated
posing significant threats to both human health and ecosystems. This paper provides a detailed discussion on applying four principal methods for modifying nanocellulose for heavy metal ion adsorption: oxidation modification
esterification modification
etherification modification
and graft copolymerization modification. These methods significantly enhanced the adsorption capacity of nanocellulose for heavy metal ions by increasing the functional groups on its surface. Finally
future research directions for modified nanocellulose in heavy metal ion adsorption are explored
emphasizing the importance of selectivity
reducing costs
improving adsorption efficiency
and ensuring sustainability.
纳米纤维素重金属离子吸附氧化改性酯化改性醚化改性接枝共聚改性
NanocelluloseHeavy metal ions adsorptionOxidative modificationEsterification modificationEtherification modificationGraft copolymerisation modification
Wanjiya, M.; Zhang, J. C.; Wu, B.; Yin, M. J.; An, Q. F. Nanofiltration membranes for sustainable removal of heavy metal ions from polluted water: a review and future perspective. Desalination, 2024, 578, 117441.
Halder, J.; Islam, N. Water pollution and its impact on the human health. J. Environ. Hum., 2015, 2(1), 36–46.
Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Susta-inable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev., 2019, 48(2), 463–487.
Asaduzzaman, K.; Khandaker, M. U.; Binti Baharudin, N. A.; Bin Mohd Amin, Y.; Farook, M. S.; Bradley, D. A.; Mahmoud, O. Heavy metals in human teeth dentine: a bio-indicator of metals exposure and environmental pollution. Chemosphere, 2017, 176, 221–230.
Li, H. H.; Chen, L. J.; Yu, L.; Guo, Z. B.; Shan, C. Q.; Lin, J. Q.; Gu, Y. G.; Yang, Z. B.; Yang, Y. X.; Shao, J. R.; Zhu, X. M.; Cheng, Z. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ., 2017, 586, 1076–1084.
Samarghandian, S.; Shirazi, F. M.; Saeedi, F.; Roshanravan, B.; Pourbagher-Shahri, A. M.; Khorasani, E. Y.; Farkhondeh, T.; Aaseth, J. O.; Abdollahi, M.; Mehrpour, O. A systematic review of clinical and laboratory findings of lead poisoning: lessons from case reports. Toxicol. Appl. Pharmacol., 2021, 429, 115681.
Shi, X. L.; Mao, Y.; Knapton, A. D.; Ding, M.; Rojanasakul, Y.; Gannett, P. M.; Dalal, N.; Liu, K. J. Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr(IV)-mediated Fenton-like reaction. Carcinogenesis, 1994, 15(11), 2475–2478.
Hu, F. J.; Li, Y. P.; Zhang, Y.; Li, Y. J.; Li, H. S.; Ai, S. Y. Flexible Ag NCs/CNFs film for colorimetric and SERS dual-mode ultrasensitive detection of mercury ions (II). Vib. Spectrosc., 2022, 118, 103342.
McGregor, D. B.; Baan, R. A.; Partensky, C.; Rice, J. M.; Wilbourn, J. D. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies—a report of an IARC Monographs Programme Meeting. Eur. J. Cancer, 2000, 36(3), 307–313.
Seilkop, S. K.; Oller, A. R. Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharmacol., 2003, 37(2), 173–190.
Ahmad Malik, L.; Bashir, A.; Qureashi, A.; Pandith, A. H. Detection and removal of heavy metal ions: a review. Environ. Chem. Lett., 2019, 17(4), 1495–1521.
Fei, Y. H.; Hu, Y. H. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. J. Mater. Chem. A, 2022, 10(3), 1047–1085.
张秀兰, 贾鑫, 鲁建江. 高分子材料在重金属吸附中的研究进展. 工业水处理, 2015, 35(6), 19–22.
Azizi Samir, M. A. S.; Alloin, F.; Dufresne, A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 2005, 6(2), 612–626.
Tavakolian, M.; Jafari, S. M.; van de Ven, T. G. M. A review on surface-functionalized cellulosic nanost-ructures as biocompatible antibacterial materials. Nanomicro Lett., 2020, 12(1), 73.
Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941–3994.
Kumar, R.; Sharma, R. K.; Singh, A. P. Grafted cellulose: a bio-based polymer for durable applications. Polym. Bull., 2018, 75(5), 2213–2242.
Li, S. J.; Chen, H. B.; Liu, X. Y.; Li, P.; Wu, W. B. Nanocellulose as a promising substrate for advanced sensors and their applications. Int. J. Biol. Macromol., 2022, 218, 473–487.
Yuan, Y. W.; Li, R. Y.; Peng, S. J. Research progress on chemical modification of waste biomass cellulose to prepare heavy metal adsorbents. Polym. Bull., 2023, 80(11), 11671–11700.
Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A. P.; Kim, H. Y.; Joshi, M. K. Techno-logical trends in heavy metals removal from industrial wastewater: a review. J. Environ. Chem. Eng., 2021, 9(4), 105688.
Sánchez-Díaz, J. C.; Cortés-Ortega, J. A.; García-Enriquez, S.; Martínez-Ruvalcaba, A. Dosing of OH–ions from acrylamide hydrogels for the selective precip-itation of copper/cobalt ions in aqueous solutions. Mater. Lett., 2024, 366, 136524.
Zou, J. H.; Qiu, Y. Y.; Li, H.; Jiang, F. Sulfur dispropo-rtionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage. Water Res., 2023, 232, 119647.
Fei, Y. H.; Hu, Y. H. Recent progress in removal of heavy metals from wastewater: a comprehensive review. Chemosphere, 2023, 335, 139077.
Abdullah, N.; Yusof, N.; Lau, W. J.; Jaafar, J.; Ismail, A. F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem., 2019, 76, 17–38.
Xiang, H. R.; Min, X. B.; Tang, C. J.; Sillanpää, M.; Zhao, F. P. Recent advances in membrane filtration for heavy metal removal from wastewater: a mini review. J. Water Process. Eng., 2022, 49, 103023.
Jin, W.; Zhang, Y. Sustainable electrochemical extraction of metal resources from waste streams: from removal to recovery. ACS Sustain. Chem. Eng., 2020, 8(12), 4693–4707.
Guo, Y. Y.; Feng, H. P.; Zhang, L. Y.; Wu, Y. F.; Lan, C. R.; Tang, J.; Wang, J. J.; Tang, L. Insights into the mechanism of selective removal of heavy metal ions by the pulsed/direct current electrochemical method. Environ. Sci. Technol., 2024, 58(12), 5589–5597.
Hu H.; Xu K. High-Risk Pollutants in Wastewater Elsevier, 2019.
Chai, W. S.; Cheun, J. Y.; Kumar, P. S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S. H.; Show, P. L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod., 2021, 296, 126589.
张开兴, 贾志文, 秦永剑, 张莲鹏, 柴希娟, 解林坤, 杜官本, 徐开蒙. 水体重金属离子吸附材料的研究进展. 化工新型材料, 2024, 52(7), 255–262.
Speroni, S.; Ozgen, S.; Conversano, A. Mercury adso-rption on activated carbon in waste-to-energy: model development and validation on real plant data. Waste Manag., 2024, 184, 72–81.
Wu, W. P.; Ge, H. C. Preparation of amino-silane and thiosemicarbazide modified graphene oxide composite for high uptake adsorption of Hg(II) and Pb(II). J. Dispers. Sci. Technol., 2024, 1–12.
Li, X.; Cui, Y. T.; Du, W. T.; Cui, W. H.; Huo, L. J.; Liu, H. F. Adsorption kinetics and mechanism of Pb(II) and Cd(II) adsorption in water through oxidized multiwalled carbon nanotubes. Appl. Sci., 2024, 14(5), 1745.
Chen, J. X.; Zhang, H.; Shahab, A.; Shehnaz, Alrefaei, A. F.; Ge, S. B.; Sonne, C.; Mo, Z. L.; Huang, C. Y. Efficient removal of heavy metals using 1,3,5-benzenetricarboxylic acid-modified zirconium-based organic frameworks. Environ. Technol. Innov., 2024, 33, 103516.
Qiao, A. H.; Cui, M.; Huang, R. L.; Ding, G. J.; Qi, W.; He, Z. M.; Klemeš, J. J.; Su, R. X. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydr. Polym., 2021, 272, 118471.
Duan, L. J.; Liu, R. R.; Li, Q. A more efficient Fenton oxidation method with high shear mixing for the preparation of cellulose nanofibers. Starch Stärke, 2020, 72(11-12), 1900259.
Isogai, A.; Zhou, Y. X. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: nanonetworks, nanofibers, and nanocrystals. Curr. Opin. Solid State Mater. Sci., 2019, 23(2), 101–106.
Zhan, C. B.; Sharma, P. R.; He, H. R.; Sharma, S. K.; McCauley-Pearl, A.; Wang, R. F.; Hsiao, B. S. Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water. Environ. Sci.: Water Res. Technol., 2020, 6(11), 3080–3090.
Tsade, H.; Anshebo, S. T.; Sabir, F. K. Preparation and characterization of functionalized cellulose nanom-aterials (CNMs) for Pb(II) ions removal from wastewater. J. Chem., 2021, 2021(1), 5514853.
Sun, X. Z.; Yang, Y.; He, Q.; Li, J. Y.; Li, R.; Chen, H. T. Adsorption properties and cost of dicarboxylic nanocellulose on copper ions for wastewater treatment. J. Renew. Mater., 2022, 10(3), 751–766.
Rwegasila, E.; Li, L. W.; Berglund, L. A.; Mushi, N. E. Strong nanostructured film and effective lead (II) removal by nitro-oxidized cellulose nanofibrils from banana rachis. Cellulose, 2024, 31(4), 2429–2445.
Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res., 2016, 91, 156–173.
Zhang, K.; Li, Z. J.; Deng, N. P.; Ju, J. G.; Li, Y. F.; Cheng, B. W.; Kang, W. M.; Yan, J. Tree-like cellulose nanofiber membranes modified by citric acid for heavy metal ion (Cu2+) removal. Cellulose, 2019, 26(2), 945–958.
da Silva, D. J.; Rosa, D. S. Chromium removal capa-bility, water resistance and mechanical behavior of foams based on cellulose nanofibrils with citric acid. Polymer, 2022, 253, 125023.
Bansal, M.; Ram, B.; Chauhan, G. S.; Kaushik, A. L-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption. Int. J. Biol. Macromol., 2018, 112, 728–736.
Xu, X. Y.; Ouyang, X. K.; Yang, L. Y. Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J. Mol. Liq., 2021, 322, 114523.
Qin, F. M.; Fang, Z. Q.; Zhou, J.; Sun, C.; Chen, K. H.; Ding, Z. X.; Li, G. H.; Qiu, X. Q. Efficient removal of Cu2+ in water by carboxymethylated cellulose nanofibrils: performance and mechanism. Biomacromolecules, 2019, 20(12), 4466–4475.
Pang, L.; Gao, Z. D.; Feng, H. J.; Wang, S. Y.; Wang, Q. Y. Cellulose based materials for controlled release formulations of agrochemicals: a review of modifications and applications. J. Control. Release, 2019, 316, 105–115.
Park, S. H.; Shin, S. S.; Park, C. H.; Jeon, S.; Gwon, J.; Lee, S. Y.; Kim, S. J.; Kim, H. J.; Lee, J. H. Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity. J. Hazard. Mater., 2020, 394, 122512.
Yu, Y. H.; An, L. L.; Bae, J. H.; Heo, J. W.; Chen, J. S.; Jeong, H.; Kim, Y. S. A novel biosorbent from hardwood cellulose nanofibrils grafted with poly(m-aminobenzene sulfonate) for adsorption of Cr(VI). Front. Bioeng. Biotechnol., 2021, 9, 682070.
Chen, X. Q.; Song, Z. H.; Yuan, B. N.; Li, X. J.; Li, S. P.; Thang Nguyen, T.; Guo, M. H.; Guo, Z. H. Fluorescent carbon dots crosslinked cellulose nanofibril/chitosan interpenetrating hydrogel system for sensitive detection and efficient adsorption of Cu(II) and Cr(VI). Chem. Eng. J., 2022, 430, 133154.
Chen, L. M.; Yu, H. Y.; Deutschman, C.; Yang, T.; Tam, K. C. Novel design of Fe-Cu alloy coated cellulose nanocrystals with strong antibacterial ability and efficient Pb2+ removal. Carbohydr. Polym., 2020, 234, 115889.
El-Khouly, A. S.; Takahashi, Y. Synthesis, characterization, and evaluation of the adsorption behavior of cellulose-graft-poly(acrylonitrile-co-acrylic acid) and cellulose-graft-poly(acrylonitrile-co-styrene) towards Ni(II) and Cu(II) heavy metals. Polymers, 2024, 16(3), 445.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构