浏览全部资源
扫码关注微信
化工资源有效利用国家重点实验室,北京化工大学材料科学与工程学院,北京 100029
*李国良,E-mail: glli@buct.edu.cn
纸质出版日期:2024-11-20,
网络出版日期:2024-08-30,
收稿日期:2024-06-27,
录用日期:2024-08-06
移动端阅览
樊嘉兴, 陈栋祥, 宋妍, 李国良. 可回收自修复聚氨酯的合成与性能调控. 高分子通报, 2024, 37(11), 1581–1588
Fan, J. X.; Chen, D. X.; Song, Y.; Li, G. L. Synthesis of recyclable self-healing polyurethane. Polym. Bull. (in Chinese), 2024, 37(11), 1581–1588
樊嘉兴, 陈栋祥, 宋妍, 李国良. 可回收自修复聚氨酯的合成与性能调控. 高分子通报, 2024, 37(11), 1581–1588 DOI: 10.14028/j.cnki.1003-3726.2024.24.190.
Fan, J. X.; Chen, D. X.; Song, Y.; Li, G. L. Synthesis of recyclable self-healing polyurethane. Polym. Bull. (in Chinese), 2024, 37(11), 1581–1588 DOI: 10.14028/j.cnki.1003-3726.2024.24.190.
通过向聚氨酯分子链中引入多级氢键与酰腙键,制备了一种可回收的高强自修复聚氨酯。以聚四氢呋喃醚二醇为软段,以4
4′-二环己基甲烷二异氰酸酯,含多级氢键和酰腙键的扩链剂为硬段,通过逐步聚合得到聚氨酯材料。一方面,合成的聚氨酯分子链中的多级氢键赋予材料自修复性能,并且可以调控其力学性能;另一方面,在酸性条件下动态共价键酰腙键可以断裂,进而实现聚氨酯材料的降解与再生资源化。结果表明,在35 ℃,24 h条件下,聚氨酯材料的修复效率可达到91.6%,通过原位变温红外对自修复机理进行了探究。进一步研究了自修复聚氨酯材料的降解性能,有助于实现聚合物的再生资源化与碳资源高效回收,推动高分子材料全生命周期减污降碳协同增效。
A self-healing polyurethane which can be degradable was prepared by introducing hierarchical hydrogen bonds and acylhydrazone bonds into the polyurethane molecular chains. On one hand
the hydrogen bonds between chains provided self-healing function for polyurethane. On the other hand
the pH-responsive acylhydrazone bonds endowed materials with recyclable properties. With the increase of the content of acylhydrazone bonds in polymer chains
the mechanical properties of the material were enhanced
and the tensile strength increased from 23.9 MPa to 54.3 MPa. Mechanical performance tests showed that polyurethane materials exhibited good healing performance
with a healing efficiency of 91.6% at 35 ℃. The self-healing mechanism was explored through variable temperature Fourier transform infrared (FTIR) spectroscopy. The polymer materials with self-healing and recyclable properties are significant for the reduction of waste for future low-carbon society.
自修复聚氨酯回收
Self-healingPolyurethaneRecyclable
Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J.Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed., 2013, 52(36), 9422-9441.
Wang, H. R.; Li, T.; Li, J.; Zhao, R. H.; Ding, A.; Xu, F. J.Structural engineering of polyurethanes for biomedical applications. Prog. Polym. Sci., 2024, 151, 101803.
Chen, Q.; Li, X. Y.; Yang, Z. Y.; Meng, X. Q.; Zhao, Y. H.; Kang, M. Q.; Li, Q. F.; Wang, J. Z.; Wang, J. W.; Wang, J. Y.The reinforcement of polyurethane by mini-sized graphene with superior performances. Chem. Eng. J., 2024, 482, 148668.
Qin, Z. W.; Yang, Y.; Tian, Q. L.; Mi, H. Y.; Li, H.; Guo, R. H.; Wang, Y.; Liu, C. T.; Shen, C. Y.Strain-hardening, impact protective and self-healing supra-molecular polyurethane nanocomposites enabled by quadruple H-bonding, disulfide bonds and nanoparticles. Chem. Eng. J., 2023, 467, 143434.
Lee, S. M.; Lee, Y. R.; Kim, S. J.; Lee, J. S.; Min, K.Recent advances and challenges in the biote-chnological upcycling of plastic wastes for constr-ucting a circular bioeconomy. Chem. Eng. J., 2023, 454, 140470.
Datta, J.; Kopczyńska, P.From polymer waste to potential main industrial products: actual state of recycling and recovering. Crit. Rev. Environ. Sci. Technol., 2016, 46(10), 905-946.
Zhang, E. D.; Liu, X. H.; Liu, Y. C.; Shi, J.; Li, X. B.; Xiong, X. Y.; Xu, C. G.; Wu, K.; Lu, M. G.Highly stretchable, bionic self-healing waterborne polyurethane elastic film enabled by multiple hydrogen bonds for flexible strain sensors. J. Mater. Chem. A, 2021, 9(40), 23055-23071.
Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W. G.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; MacKay, M. E.; Hamley, I. W.; Rowan, S. J.A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc., 2010, 132(34), 12051-12058.
Cui, C. H.; Wang, F.; Chen, X. X.; Xu, T.; Li, Z.; Chen, K. X.; Guo, Y. Z.; Cheng, Y. L.; Ge, Z. S.; Zhang, Y. F.Covalent adaptable networks with dual dynamic covalent bonds for self-repairing infrared transmitting materials. Adv. Funct. Mater., 2024, 34(24), 2315469.
Watson, J. D.; Crick, F. H.Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356), 737-738.
Kuhl, N.; Bode, S.; Bose, R. K.; Vitz, J.; Seifert, A.; Hoeppener, S.; Garcia, S. J.; Spange, S.; van der Zwaag, S.; Hager, M. D.; Schubert, U. S.Acylhy-drazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater., 2015, 25(22), 3295-3301.
Yang, W. J.; Zhu, Y. L.; Liu, T. X.; Puglia, D.; Kenny, J. M.; Xu, P. W.; Zhang, R.; Ma, P. M.Multiple structure reconstruction by dual dynamic crosslinking strategy inducing self-reinforcing and toughening the polyurethane/nanocellulose elastomers. Adv. Funct. Mater., 2023, 33(12), 2213294.
谌康谧, 姚跃君, 郑鸿浩, 高长有. 基于还原响应性的生物可降解不饱和聚氨酯的合成及其性能研究. 高分子学报, 2019, 50(6), 623-632.
Ma, X. J.; Yue, H. M.; Huang, M. M.; Huang, G. S.; Yao, C. X.; Wu, Y. H.; He, S. Q.; Liu, H.; Liu, W. T.; Zhu, C. S.Colorless, transparent, and shape memory polyurethane networks with high strength and recyclability. J. Appl. Polym. Sci., 2024, 141(1), e54758.
冯学鹏, 蒋晓菡, 夏德勇, 盛扬, 姜彦, 张嵘. 可降解聚氨酯丙烯酸酯生物材料的制备及其表征. 高分子学报, 2016, (10), 1390-1399.
Liu, Z. H.; Fang, Z. Z.; Zheng, N.; Yang, K. X.; Sun, Z.; Li, S. J.; Li, W.; Wu, J. J.; Xie, T.Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat. Chem., 2023, 15(12), 1773-1779.
Liu, B. Y.; Westman, Z.; Richardson, K.; Lim, D.; Stottlemyer, A. L.; Farmer, T.; Gillis, P.; Vlcek, V.; Christopher, P.; Abu-Omar, M. M.Opportunities in closed-loop molecular recycling of end-of-life polyurethane. ACS Sustain. Chem. Eng., 2023, 11(16), 6114-6128.
刘雪辉, 徐世美, 张帆, 汪秀丽, 王玉忠. 高分子材料的化学升级回收. 高分子学报, 2022, 53(9), 1005-1022.
Yang, T. T.; Lu, X. Y.; Wang, X. H.; Wei, X.; An, N.; Li, Y. X.; Wang, W. J.; Li, X.; Fang, X.; Sun, J. Q.Upcycling of carbon fiber/thermoset composites into high-performance elastomers and repurposed carbon fibers. Angew. Chem. Int. Ed., 2024, 63(22), e202403972.
Zhang, Z. Q.; Lei, D.; Zhang, C. X.; Wang, Z. Y.; Jin, Y. H.; Zhang, W.; Liu, X. K.; Sun, J. Q.Strong and tough supramolecular covalent adaptable networks with room-temperature closed-loop recyclability. Adv. Mater., 2023, 35(7), 2208619.
Guo, R.; Zhang, Q.; Wu, Y. S.; Chen, H. B.; Liu, Y. H.; Wang, J. J.; Duan, X. L.; Chen, Q.; Ge, Z. S.; Zhang, Y. F.Extremely strong and tough biodegradable poly(urethane) elastomers with unprecedented crack tolerance via hierarchical hydrogen-bonding interactions. Adv. Mater., 2023, 35(21), 2212130.
Song, Y.; Liu, Y.; Qi, T.; Li, G. L.Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed., 2018, 57(42), 13838-13842.
魏燕彦, 白亚朋. 酰腙键聚氨酯凝胶的合成及自修复性能. 高分子材料科学与工程, 2017, 33(11), 40-45.
Li, Z. Q.; Zhu, Y. L.; Niu, W. W.; Yang, X.; Jiang, Z. Y.; Lu, Z. Y.; Liu, X. K.; Sun, J. Q.Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater., 2021, 33(27), 2101498.
Yuan, Q.; Zhou, T.; Li, L.; Zhang, J. H.; Liu, X. F.; Ke, X. L.; Zhang, A. M.Hydrogen bond breaking of TPU upon heating: understanding from the viewpoints of molecular movements and enthalpy. RSC Adv., 2015, 5(39), 31153-31165.
Deng, G. H.; Li, F. Y.; Yu, H. X.; Liu, F. Y.; Liu, C. Y.; Sun, W. X.; Jiang, H. F.; Chen, Y. M.Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett., 2012, 1(2), 275-279.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构