浏览全部资源
扫码关注微信
1.华南理工大学前沿软物质学院华南软物质科学与技术高等研究院,广州 510640
2.南京大学化学化工学院高分子科学与工程系,南京 210093
3.华南理工大学广东省功能与智能杂化材料与器件重点实验室,广州 510640
4.华南理工大学广东省高等学校能源与信息高分子材料基础研究卓越中心,广州 510640
*张荣纯,E-mail:zhangcr@scut.edu.cn
收稿日期:2024-09-19,
录用日期:2024-11-07
移动端阅览
王皓, 赵培植, 王晓亮, 张荣纯. 分子流变学: 质子多量子和快速场循环核磁共振. 高分子通报, doi: 10.14028/j.cnki.1003-3726.2025.24.278
Wang, H.; Zhao, P. Z.; Wang, X. L.; Zhang, R. C. Molecular rheology: proton multiple-quantum and fast-field-cycling nuclear magnetic resonance. Polym. Bull. (in Chinese), doi: 10.14028/j.cnki.1003-3726.2025.24.278
王皓, 赵培植, 王晓亮, 张荣纯. 分子流变学: 质子多量子和快速场循环核磁共振. 高分子通报, doi: 10.14028/j.cnki.1003-3726.2025.24.278 DOI:
Wang, H.; Zhao, P. Z.; Wang, X. L.; Zhang, R. C. Molecular rheology: proton multiple-quantum and fast-field-cycling nuclear magnetic resonance. Polym. Bull. (in Chinese), doi: 10.14028/j.cnki.1003-3726.2025.24.278 DOI:
流变学通过表征宏观黏弹性对外界应力或应变的响应而成为研究高分子动力学的有力工具,而近年来发展的多量子和快速场循环核磁共振技术则可以在分子层面直接揭示高分子动力学演化过程,因此流变学和核磁共振技术相结合可以在不同时空尺度上更全面地揭示材料的内在动力学特性,建立材料宏观性能和微观分子动力学之间的联系,同时为发展和完善高分子动力学理论提供强有力的技术支撑。基于此,本文主要简单介绍高分子动力学基本理论,并详细介绍了利用多量子和快速场循环核磁共振技术获取高分子多尺度动力学的基本原理及方法,并将其与宏观流变学的实验结果相关联。最后,我们还简单介绍了多量子和快速场循环核磁共振技术在超分子橡胶,凝胶,纳米复合材料等多个复杂体系中的应用。
Rheology is a powerful tool for probing molecular dynamics of polymers
via
characterizing viscoelastic responses to external stress or strain
while the multiple-quantum (MQ) and fast-field-cycling (FFC) nuclear magnetic resonance (NMR) techniques can directly quantitatively reveal the hierarchical dynamics of polymers at the molecular level. Herein
a combination of rheology and NMR can provide deep insights into the comprehensive dynamic characteristics of polymers
and thus to establish the relationship between macroscopic performance and microscopic molecular dynamics
providing experimental evidences for the further development of polymer dynamics theories. In this article
we firstly give a brief introduction to the polymer dynamics theories
and then we detail the fundamental principles and experimental methods of MQ and FFC NMR for quantitative extraction of molecular dynamics inform
ation
which are correlated well with rheology results. Lastly
we show some examples of using a combination of NMR and rheology to study different complex systems including supramolecular rubbers
hydrogels
nanocomposites
and so on.
多量子核磁快速场循环流变高分子动力学超分子
Multiple-quantum NMRFast-field-cyclingRheologyPolymer dynamicsSupramolecules
Rubinstein, M.; Colby, R. H. Polymer Physics.Oxford University Press: Oxford, New York, 2003.
Tracht, U.; Wilhelm, M.; Heuer, A.; Feng, H.; Schmidt-Rohr, K.; Spiess, H. W. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett., 1998, 81(13), 2727–2730.
Hu, W. G.; Schmidt-Rohr, K. Polymer ultradrawability: the crucial role of α-relaxation chain mobility in the crystallites. Acta Polym., 1999, 50(8), 271–285.
Yoo, D. J.; Elabd, A.; Choi, S.; Cho, Y.; Kim, J.; Lee, S. J.; Choi, S. H.; Kwon, T. W.; Char, K.; Kim, K. J.; Coskun, A.; Choi, J. W. Highly elastic polyrotaxane binders for mechanically stable lithium hosts in lithium-metal batteries. Adv. Mater., 2019, 31(29), e1901645.
Huang, Z. H.; Chen, X. Y.; O’Neill, S. J. K.; Wu, G. L.; Whitaker, D. J.; Li, J. X.; McCune, J. A.; Scherman, O. A. Highly compressible glass-like supramolecular polymer networks. Nat. Mater., 2022, 21(1), 103–109.
Liu, Y. H.; Wan, J. J.; Zhao, X. Y.; Zhao, J.; Guo, Y. C.; Bai, R. X.; Zhang, Z. M.; Yu, W.; Gibson, H. W.; Yan, X. Z. Highly strong and tough supramolecular polymer networks enabled by cryptand-based host-guest recognition. Angew. Chem. Int. Ed, 2023, 62(20), e202302370.
Lai, J. C.; Jia, X. Y.; Wang, D. P.; Deng, Y. B.; Zheng, P.; Li, C. H.; Zuo, J. L.; Bao, Z. N. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun., 2019, 10(1), 1164.
Park, H.; Kang, T.; Kim, H.; Kim, J. C.; Bao, Z. N.; Kang, J. Toughening self-healing elastomer crosslinked by metal-ligand coordination through mixed counter anion dynamics. Nat. Commun., 2023, 14(1), 5026.
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058), 965–968.
Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356(6333), 62–65.
Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. 1953, 21(7), 1272–1280.
Zimm, B. H.; Kilb, R. W. Dynamics of branched polymer molecules in dilute solution. J. Polym. Sci., 1959, 37(131), 19–42.
Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics.Clarendon Press: Oxford, 2013.
de Gennes, P. G. Scaling Concepts in Polymer Physics.Cornell University Press, 1979.
Green, M. S.; Tobolsky, A. V. A new approach to the theory of relaxing polymeric media. J. Chem. Phys., 1946, 14(2), 80–92.
Tanaka, F.; Edwards, S. F. Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules, 1992, 25(5), 1516–1523.
Lodge, A. S. A network theory of flow birefringence and stress in concentrated polymer solutions. Trans. Faraday Soc., 1956, 52(0), 120–130.
Yamamoto, M. The visco-elastic properties of network structure I. General formalism. J. Phys. Soc. Jpn., 1956, 11(4), 413–421.
Leibler, L.; Rubinstein, M.; Colby, R. H. Dynamics of reversible networks. Macromolecules, 1991, 24(16), 4701–4707.
Rubinstein, M.; Semenov, A. N. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules, 1998, 31(4), 1386–1397.
Semenov, A. N.; Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules, 1998, 31(4), 1373–1385.
Rubinstein, M.; Semenov, A. N. Dynamics of entangled solutions of associating polymers. Macromolecules, 2001, 34(4), 1058–1068.
Semenov, A. N.; Joanny, J. F.; Khokhlov, A. R. Associating polymers: equilibrium and linear viscoelasticity. Macromolecules, 1995, 28(4), 1066–1075.
Semenov, A. N.; Rubinstein, M. Dynamics of entangled associating polymers with large aggregates. Macromolecules, 2002, 35(12), 4821–4837.
Bird, R. B.; Armstrong, R. C., Hassager, O. eds. Dynamics of Polymeric Liquids, 2nd Edition.Wiley: New York, 1987.
Larson, R. G. The Structure and Rheology of Complex Fluids. Topics in Chemical Engineering.Oxford University Press: Oxford, New York, 1999.
Huggins, M. L. Viscoelastic properties of polymers. J. Am. Chem. Soc., 1961, 83(19), 4110–4111.
Chen, Q.; Tudryn, G. J.; Colby, R. H. Ionomer dynamics and the sticky Rouse model. J. Rheol., 2013, 57(5), 1441–1462.
Chen, Q.; Huang, C. W.; Weiss, R. A.; Colby, R. H. Viscoelasticity of reversible gelation for ionomers. Macromolecules, 2015, 48(4), 1221–1230.
Ahmadi, M.; Jangizehi, A.; van Ruymbeke, E.; Seiffert, S. Deconvolution of the effects of binary associations and collective assemblies on the rheological properties of entangled side-chain supramolecular polymer networks. Macromolecules, 2019, 52(14), 5255–5267.
Kimmich, R.; Anoardo, E. Field-cycling NMR relaxometry. Prog. Nucl. Magn. Reson. Spectrosc., 2004, 44, 138–148.
Kruk, D.; Herrmann, A.; Rössler, E. A. Field-cycling NMR relaxometry of viscous liquids and polymers. Prog. Nucl. Magn. Reson. Spectrosc., 2012, 63, 33–64.
Fujara, F.; Kruk, D.; Privalov, A. F. Solid state field-cycling NMR relaxometry: instrumental improvements and new applications. Prog. Nucl. Magn. Reson. Spectrosc., 2014, 82, 39–69.
Saalwächter, K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog. Nucl. Magn. Reson. Spectrosc., 2007, 51(1), 1–35.
Vaca Chávez, F.; Saalwächter, K. NMR observation of entangled polymer dynamics: tube model predictions and constraint release. Phys. Rev. Lett., 2010, 104(19), 198305.
Mordvinkin, A.; Saalwächter, K. Microscopic obser-vation of the segmental orientation autocorrelation function for entangled and constrained polymer chains. J. Chem. Phys., 2017, 146(9), 094902.
Mordvinkin, A.; Saalwachter, K. Erratum: “Microscopic Observation of the Segmental Orientation Autocorrelation Function for Entangled and Constrained Polymer Chains” [J. Chem. Phys. 146, 094902 (2017)]. J.Chem. Phys. 2018, 148(8), 089901.
Zhang, R. C.; Yan, T. Z.; Lechner, B. D.; Schröter, K.; Liang, Y.; Li, B. H.; Furtado, F.; Sun, P. C.; Saalwächter, K. Heterogeneity, segmental and hydrogen bond dynamics, and aging of supramolecular self-healing rubber. Macromolecules, 2013, 46(5), 1841–1850.
Zou, X. T.; Kui, X.; Zhang, R. C.; Zhang, Y.; Wang, X. L.; Wu, Q.; Chen, T. H.; Sun, P. C. Viscoelasticity and structures in chemically and physically dual-cross-linked hydrogels: insights from rheology and proton multiple-quantum NMR spectroscopy. Macromolecules, 2017, 50(23), 9340–9352.
Zhang, C.; Yang, Z. J.; Duong, N. T.; Li, X. H.; Nishiyama, Y.; Wu, Q.; Zhang, R. C.; Sun, P. C. Using dynamic bonds to enhance the mechanical performance: from microscopic molecular interactions to macroscopic properties. Macromolecules, 2019, 52(13), 5014–5025.
Zhang, R. C.; Zhang, C.; Yang, Z. J.; Wu, Q.; Sun, P. C.; Wang, X. L. Hierarchical dynamics in a transient polymer network cross-linked by orthogonal dynamic bonds. Macromolecules, 2020, 53(14), 5937–5949.
Liu, L.; Liu, Z.; Ren, Y.; Zou, X.; Peng, W.; Li, W.; Wu, Y.; Zheng, S.; Wang, X.; Yan, F. A superstrong and reversible ionic crystal-based adhesive inspired by ice adhesion. Angew. Chem. Int. Ed., 2021, 60(16), 8948–8959.
Hou, L. X.; Ju, H. Q.; Hao, X. P.; Zhang, H. K.; Zhang, L.; He, Z. Y.; Wang, J. J.; Zheng, Q.; Wu, Z. L. Intrinsic anti-freezing and unique phosphorescence of glassy hydrogels with ultrahigh stiffness and toughness at low temperatures. Adv. Mater., 2023, 35(21), e2300244.
Liu, K.; Wu, P. Y. Small ionic-liquid-based molecule drives strong adhesives. Angew. Chem. Int. Ed, 2024, 63(25), e202403220.
刘双, 曹晓, 张嘉琪, 韩迎春, 赵欣悦, 陈全. 流变技术在高分子表征中的应用: 如何正确地进行剪切流变测试. 高分子学报, 2021, 52(4), 406–422.
张荣纯. 多相聚合物微观结构和分子间相互作用的固体NMR研究. 高分子学报 2020, 51(2), 136–147.
Wu, S. L.; Chen, Q. Advances and new opportunities in the rheology of physically and chemically reversible polymers. Macromolecules, 2022, 55(3), 697–714.
王粉粉, 孙平川. 固体核磁共振技术在高分子表征研究中的应用. 高分子学报 2024, 52(7), 840–856.
Viovy, J. L.; Rubinstein, M.; Colby, R. H. Constraint release in polymer melts: tube reorganization versus tube dilation. Macromolecules, 1991, 24(12), 3587–3596.
de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys., 1971, 55(2), 572–579.
McKenna, G. B. Looking at the glass transition: challenges of extreme time scales and other interesting problems. Rubber Chem. Technol., 2020, 93(1), 79–120.
Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular‐dynamics simulation. 1990, 92(8), 5057–5086.
Vaca Chávez, F.; Saalwächter, K. Time-domain NMR observation of entangled polymer dynamics: universal behavior of flexible homopolymers and applicability of the tube model. Macromolecules, 2011, 44(6), 1549–1559.
Ball, R. C.; Callaghan, P. T.; Samulski, E. T. A simplified approach to the interpretation of nuclear spin correlations in entangled polymeric liquids. 1997, 106(17), 7352–7361.
Ding, Y. F.; Sokolov, A. P. Breakdown of Time–Temperature superposition principle and universality of chain dynamics in polymers. Macromolecules, 2006, 39(9), 3322–3326.
Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc., 1992, 75(5), 1043–1055.
Tammann, G.; Hesse, W. Die Abhängigkeit der viscosität von der temperatur Bie unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem., 1926, 156(1), 245–257.
Garca-Coln, L. S.; Lf, D. C.; Goldstein, P. Theoretical basis for the vogel-fulcher-tammann equation. Phys. Rev. B Condens. Matter, 1989, 40(10), 7040–7044.
Williams, M. L.; Landel, R. F.; Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc., 1955, 77(14), 3701–3707.
Baxandall, L. G. Dynamics of reversibly crosslinked chains. Macromolecules, 1989, 22(4), 1982–1988.
Levitt, M. H. Spin Dynamics Basics of Nuclear Magnetic Resonance. John Wiley & Sons, 2008.
Saalwächter, K.; Herrero, B.; López-Manchado, M. A. Chain order and cross-link density of elastomers as investigated by proton multiple-quantum NMR. Macromolecules, 2005, 38(23), 9650–9660.
Wang, H.; Yan, Z.; Li, D.; Wang, X.; Zhang, R. Solid-State NMR Spectroscopy. In Encyclopedia of Polymer Science and Technology.John Wiley & Sons, Ltd., 2022, 1–30.
Saalwächter, K.; Ziegler, P.; Spyckerelle, O.; Haidar, B.; Vidal, A.; Sommer, J. U. 1H multiple-quantum nuclear magnetic resonance investigations of molecular order distributions in poly(dimethylsiloxane) networks: evidence for a linear mixing law in bimodal systems. J. Chem. Phys., 2003, 119(6), 3468–3482.
Saalwächter, K. Robust NMR approaches for the determination of homonuclear dipole-dipole coupling constants in studies of solid materials and biomolecules. Chemphyschem, 2013, 14(13), 3000–3014.
Saalwächter, K. Detection of heterogeneities in dry and swollen polymer networks by proton low-field NMR spectroscopy. J. Am. Chem. Soc., 2003, 125(48), 14684–14685.
Chassé, W.; Valentín, J. L.; Genesky, G. D.; Cohen, C.; Saalwächter, K. Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. J. Chem. Phys., 2011, 134(4), 044907.
Lorthioir, C.; Randriamahefa, S.; Deloche, B. Some aspects of the orientational order distribution of flexible chains in a diblock mesophase. J. Chem. Phys., 2013, 139(22), 224903.
Graf, R.; Heuer, A.; Spiess, H. W. Chain-order effects in polymer melts probed by H1 double-quantum NMR spectroscopy. Phys. Rev. Lett., 1998, 80(26), 5738–5741.
Anderson, P. W.; Weiss, P. R. Exchange narrowing in paramagnetic resonance. Rev. Mod. Phys., 1953, 25(1), 269–276.
Saalwächter, K.; Heuer, A. Chain dynamics in elastomers as investigated by proton multiple-quantum NMR. Macromolecules, 2006, 39(9), 3291–3303.
Saalwächter, K. 1H multiple-quantum nuclear magnetic resonance investigations of molecular order in polymer networks. II. Intensity decay and restricted slow dynamics. 2004, 120(1), 454–464.
Vaca Chávez, F.; Saalwächter, K. Time-domain NMR observation of entangled polymer dynamics: Analytical theory of signal functions. Macromolecules, 2011, 44(6), 1560–1569.
Furtado, F.; Damron, J.; Trutschel, M. L.; Franz, C.; Schroter, K.; Ball, R. C.; Saalwächter, K.; Panja, D. NMR observations of entangled polymer dynamics: focus on tagged chain rotational dynamics and confirmation from a simulation model. Macromolecules, 2014, 47(1), 256–268.
Trutschel, M. L.; Mordvinkin, A.; Furtado, F.; Willner, L.; Saalwächter, K. Time-domain NMR observation of entangled polymer dynamics: focus on all tube-model regimes, chain center, and matrix effects. Macromolecules, 2018, 51(11), 4108–4117.
Bloembergen, N.; Purcell, E. M.; Pound, R. V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev., 1948, 73(7), 679–712.
Kimmich, R. Field cycling in NMR relaxation spectro-scopy: applications in biological, chemical and polymer physics. Bull. Magn. Reson. 1980, 1(4), 195–218.
Noack, F. NMR field-cycling spectroscopy: principles and a]lications. Prog. Nucl. Magn. Reson. Spectrosc., 1986, 18(3), 171–276.
Kehr, M.; Fatkullin, N.; Kimmich, R. Deuteron and proton spin-lattice relaxation dispersion of polymer melts: intrasegment, intrachain, and interchain contributions. J. Chem. Phys., 2007, 127(8), 084911.
Kehr, M.; Fatkullin, N.; Kimmich, R. Molecular diffusion on a time scale between nano- and millise-conds probed by field-cycling NMR relaxometry of intermolecular dipolar interactions: application to polymer melts. J. Chem. Phys., 2007, 126(9), 094903.
Kariyo, S.; Gainaru, C.; Schick, H.; Brodin, A.; Novikov, V. N.; Rössler, E. A. From a simple liquid to a polymer melt: NMR relaxometry study of polybutadiene. Phys. Rev. Lett., 2006, 97(20), 207803.
Kariyo, S.; Herrmann, A.; Gainaru, C.; Schick, H.; Brodin, A.; Novikov, V. N.; Rössler, E. A. Erratum: From a simple liquid to a polymer melt: NMR relaxo-metry study of polybutadiene. Phys.Rev. Lett., 2008, 100(10), 109901.
Kariyo, S.; Brodin, A.; Gainaru, C.; Herrmann, A.; Hintermeyer, J.; Schick, H.; Novikov, V. N.; Rössler, E. A. From simple liquid to polymer melt. glassy and polymer dynamics studied by fast field cycling NMR relaxometry: Rouse regime. Macromolecules, 2008, 41(14), 5322–5332.
Herrmann, A.; Novikov, V. N.; Rössler, E. A. Dipolar and bond vector correlation function of linear polymers revealed by field cycling 1H NMR: crossover from rouse to entanglement regime. Macromolecules, 2009, 42(6), 2063–2068.
Herrmann, A.; Kresse, B.; Gmeiner, J.; Privalov, A. F.; Kruk, D.; Fujara, F.; Rössler, E. A. Protracted crossover to reptation dynamics: a field cycling 1H NMR study including extremely low frequencies. Macromolecules, 2012, 45(3), 1408–1416.
Herrmann, A.; Kariyo, S.; Abou Elfadl, A.; Meier, R.; Gmeiner, J.; Novikov, V. N.; Rössler, E. A. Universal polymer dynamics revealed by field cycling 1H NMR. Macromolecules, 2009, 42(14), 5236–5243.
Kremer, F.; Schönhals, A. eds. Broadband Dielectric Spectroscopy.Springer Science & Business Media, 2002.
Hofmann, M.; Herrmann, A.; Abou Elfadl, A.; Kruk, D.; Wohlfahrt, M.; Rössler, E. A. Glassy, rouse, and entanglement dynamics as revealed by field cycling 1H NMR relaxometry. Macromolecules, 2012, 45(5), 2390–2401.
Herrmann, A.; Kresse, B.; Wohlfahrt, M.; Bauer, I.; Privalov, A. F.; Kruk, D.; Fatkullin, N.; Fujara, F.; Rössler, E. A. Mean square displacement and reorien-tational correlation function in entangled polymer melts revealed by field cycling 1H and 2H NMR relaxometry. Macromolecules, 2012, 45(16), 6516–6526.
Schmidtke, B.; Hofmann, M.; Lichtinger, A.; Rössler, E. A. Temperature dependence of the segmental relaxation time of polymers revisited. Macromolecules, 2015, 48(9), 3005–3013.
Hofmann, M.; Flämig, M.; Rössler, E. A. Dynamics of polymer systems studied by NMR field-cycling relaxometry. NMR Methods for Characterization of Synthetic and Natural Polymers.Zhang, R., Miyoshi, T., Sun, P., eds. The Royal Society of Chemistry, 2019, 101–129.
Lahmar, F.; Tzoumanekas, C.; Theodorou, D. N.; Rousseau, B. Onset of entanglements revisited. Dynamical analysis. Macromolecules, 2009, 42(19), 7485–7494.
Schäler, K.; Ostas, E.; Schröter, K.; Thurn-Albrecht, T.; Binder, W. H.; Saalwächter, K. Influence of chain topology on polymer dynamics and crystallization. investigation of linear and cyclic poly(ε-caprolactone)s by 1H solid-state NMR methods. Macromolecules, 2011, 44(8), 2743–2754.
Hofmann, M.; Kresse, B.; Privalov, A. F.; Willner, L.; Fatkullin, N.; Fujara, F.; Rössler, E. A. Field-cycling NMR relaxometry probing the microscopic dynamics in polymer melts. Macromolecules, 2014, 47(22), 7917–7929.
Wang, Z. W.; Likhtman, A. E.; Larson, R. G. Segmental dynamics in entangled linear polymer melts. Macromolecules, 2012, 45(8), 3557–3570.
Park, S. J.; Desai, P. S.; Chen, X.; Larson, R. G. Universal relaxation behavior of entangled 1,4-polybutadiene melts in the transition frequency region. Macromolecules, 2015, 48(12), 4122–4131.
Hofmann, M.; Fatkullin, N.; Rössler, E. A. Inconsistencies in determining the entanglement time of poly(butadiene) from rheology and comparison to results from field-cycling NMR. Macromolecules, 2017, 50(4), 1755–1758.
An, N.; Wang, X. H.; Li, Y. X.; Zhang, L.; Lu, Z. Y.; Sun, J. Q. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes. Adv. Mater., 2019, 31(41), e1904882.
Li, C. H.; Zuo, J. L. Self-healing polymers based on coordination bonds. Adv. Mater., 2020, 32(27), e1903762.
Peng, Y.; Gu, S. Y.; Wu, Q.; Xie, Z. T.; Wu, J. R. High-performance self-healing polymers. Acc. Mater. Res., 2023, 4(4), 323–333.
Zhang, Z. M.; Zhao, J.; Yan, X. Z. Mechanically interlocked polymers with dense mechanical bonds. Acc. Chem. Res., 2024, 57(6), 992–1006.
Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science, 2012, 335(6070), 813–817.
Zhang, Z. J.; Huang, C. W.; Weiss, R. A.; Chen, Q. Association energy in strongly associative polymers. J. Rheol., 2017, 61(6), 1199–1207.
Brassinne, J.; Cadix, A.; Wilson, J.; van Ruymbeke, E. Dissociating sticker dynamics from chain relaxation in supramolecular polymer networks—the importance of free partner!. J. Rheol., 2017, 61(6), 1123–1134.
Xing, K. Y.; Tress, M.; Cao, P. F.; Fan, F.; Cheng, S. W.; Saito, T.; Sokolov, A. P. The role of chain-end association lifetime in segmental and chain dynamics of telechelic polymers. Macromolecules, 2018, 51(21), 8561–8573.
Lewis, C. L.; Stewart, K.; Anthamatten, M. The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers. Macromolecules, 2014, 47(2), 729–740.
Golkaram, M.; Loos, K. A critical approach to polymer dynamics in supramolecular polymers. Macromolecules, 2019, 52(24), 9427–9444.
Goldansaz, H.; Voleppe, Q.; Piogé, S.; Fustin, C. A.; Gohy, J. F.; Brassinne, J.; Auhl, D.; van Ruymbeke, E. Controlling the melt rheology of linear entangled metallo-supramolecular polymers. Soft Matter, 2015, 11(4), 762–774.
Burnworth, M.; Tang, L. M.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically healable supramolecular polymers. Nature, 2011, 472(7343), 334–337.
Aida, T.; Meijer, E. W. Supramolecular polymers – we’ve come full circle. Isr. J. Chem. 2020, 60(1–2), 33–47.
Mordvinkin, A.; Döhler, D.; Binder, W. H.; Colby, R. H.; Saalwächter, K. Terminal flow of cluster-forming supramolecular polymer networks: Single-chain relaxation or micelle reorganization? Phys. Rev. Lett., 2020, 125(12), 127801.
Mordvinkin, A.; Döhler, D.; Binder, W. H.; Colby, R. H.; Saalwächter, K. Rheology, sticky chain, and sticker dynamics of supramolecular elastomers based on cluster-forming telechelic linear and star polymers. Macromolecules, 2021, 54(11), 5065–5076.
Mordvinkin, A.; Suckow, M.; Böhme, F.; Colby, R. H.; Creton, C.; Saalwächter, K. Hierarchical sticker and sticky chain dynamics in self-healing butyl rubber ionomers. Macromolecules, 2019, 52(11), 4169–4184.
Martini, F.; Carignani, E.; Nardelli, F.; Rossi, E.; Borsacchi, S.; Cettolin, M.; Susanna, A.; Geppi, M.; Calucci, L. Glassy and polymer dynamics of elastomers by 1H field-cycling NMR relaxometry: Effects of cross-linking. Macromolecules, 2020, 53(22), 10028–10039.
Nardelli, F.; Martini, F.; Carignani, E.; Rossi, E.; Borsacchi, S.; Cettolin, M.; Susanna, A.; Arimondi, M.; Giannini, L.; Geppi, M.; Calucci, L. Glassy and polymer dynamics of elastomers by 1H-field-cycling NMR relaxometry: effects of fillers. J. Phys. Chem. B, 2021, 125(17), 4546–4554.
Kariyo, S.; Stapf, S. Influence of cross-link density and deformation on the NMR relaxation dispersion of natural rubber. Macromolecules, 2002, 35(25), 9253–9255.
Stapf, S.; Kariyo, S. Dependence of order and dynamics in polymers and elastomers under deformation revealed by NMR techniques. Acta Phys. Pol. A, 2005, 108(2), 247–259.
Ayalur-Karunakaran, S.; Blümich, B.; Stapf, S. NMR investigations of polymer dynamics in a partially filled porous matrix. Eur. Phys. J. E, 2008, 26(1), 43–53.
Ayalur-Karunakaran, S.; Blümich, B.; Stapf, S. Chain dynamics of a weakly adsorbing polymer in thin films. Langmuir, 2009, 25(20), 12208–12216.
Wang, H.; Peng, W. S.; Wu, Q.; Zhao, Y.; Wang, S. T.; Yang, Y.; Wu, J. R.; Wang, X. L.; Zhang, R. C. Interplay of crosslinking structures and segmental dynamics in solid-liquid elastomers. Chin. J. Polym. Sci., 2022, 40(10), 1297–1306.
Lindt, K.; Fatkullin, N.; Mattea, C.; Allgaier, J.; Stapf, S.; Kruteva, M. Spin relaxation and dynamics of ring poly(ethylene oxide) in melts. Macromolecules, 2024, 57(8), 3765–3775.
Ratzsch, K. F.; Friedrich, C.; Wilhelm, M. Low-field rheo-NMR: a novel combination of NMR relaxometry with high end shear rheology. J. Rheol., 2017, 61(5), 905–917.
Räntzsch, V.; Özen, M. B.; Ratzsch, K. F.; Stellamanns, E.; Sprung, M.; Guthausen, G.; Wilhelm, M. Polymer crystallization studied by hyphenated rheology techniques: rheo-NMR, rheo-SAXS, and rheo-microscopy. Macromol. Mater. Eng., 2019, 304(2), 1800586.
Fengler, C.; Keller, J.; Ratzsch, K. F.; Wilhelm, M. In situ RheoNMR correlation of polymer segmental mobility with mechanical properties during hydrogel synthesis. Adv. Sci., 2022, 9(4), 2104231.
Nie, S. L.; Ratzsch, K. F.; Grage, S. L.; Keller, J.; Ulrich, A. S.; Lacayo-Pineda, J.; Wilhelm, M. Correlation between macroscopic elasticity and chain dynamics of natural rubber during vulcanization as determined by a unique rheo-NMR combination. Macromolecules, 2021, 54(13), 6090–6100.
Xia, Z. J.; Wang, Y. S.; Gong, K.; Chen, W. An in situ stretching instrument combined with low field nuclear magnetic resonance (NMR): Rheo-spin NMR. Rev. Sci. Instrum., 2022, 93(3), 033905.
Xiong, Y. Q.; Xia, Z. J.; Lu, A.; Chen, W. Time-resolved extensional rheo-NMR spectroscopy for investigating polymer nanocomposites under deformation. Anal. Chem., 2023, 95(19), 7545–7551.
Zhang, R. C.; Mroue, K. H.; Ramamoorthy, A. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. J. Magn. Reson., 2016, 266, 59–66.
Zhang, R. C.; Nishiyama, Y.; Ramamoorthy, A. Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. J. Magn. Reson., 2019, 309, 106615.
Yan, Z. W.; Ye, Y. Q.; Zhang, R. C. 2D HETCOR solid-state NMR spectroscopy for multiphase materials with mobility contrast. J. Phys. Chem. C, 2022, 126(31), 13311–13318.
Yan, Z. W.; Zhang, R. C. Measurement of spin-lattice relaxation times in multiphase polymer systems. J. Magn. Reson., 2023, 357, 107597.
Yan, Z. W.; Zhao, P. Z.; Yan, X. J.; Zhang, R. C. Using abundant 1H polarization to enhance the sensitivity of solid-state NMR spectroscopy. J. Phys. Chem. Lett., 2024, 15(7), 1866–1878.
Kashihara, K.; Oouchi, M.; Kodama, Y.; Arai, T.; Horie, M.; Kitaura, T.; Ishii, Y. High-field nuclear magnetic resonance studies reveal new structural landscape of sulfur-vulcanized natural rubber. Biomacromolecules, 2022, 23(11), 4481–4492.
Zuo, B.; Zhou, H.; Davis, M. J. B.; Wang, X. P.; Priestley, R. D. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys. Rev. Lett., 2019, 122(21), 217801.
Vioglio, P. C.; Thureau, P.; Juramy, M.; Ziarelli, F.; Viel, S.; Williams, P. A.; Hughes, C. E.; Harris, K. D. M.; Mollica, G. A strategy for probing the evolution of crystallization processes by low-temperature solid-state NMR and dynamic nuclear polarization. J. Phys. Chem. Lett., 2019, 10(7), 1505–1510.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构