浏览全部资源
扫码关注微信
浙江工业大学生物工程学院,杭州 310000
*吴澄帆,E-mail: wucf0220@zjut.edu.cn
收稿日期:2024-10-10,
录用日期:2024-12-09,
网络出版日期:2025-01-27,
纸质出版日期:2025-03-20
移动端阅览
冯晶烨, 黄文武, 詹青怡, 燕云峰, 吴澄帆. 瞬时纳米沉淀法制备壳聚糖/三聚磷酸钠纳米粒子及其siRNA递送性能评价. 高分子通报, 2025, 38(3), 460–471.
Feng, J. Y.; Huang, W. W.; Zhan, Q. Y.; Yan, Y. F.; Wu, C. F. Flash nanoprecipitation fabrication of chitosan/sodium tripolyphosphate nanoparticles for siRNA delivery. Polym. Bull. (in Chinese), 2025, 38(3), 460–471.
冯晶烨, 黄文武, 詹青怡, 燕云峰, 吴澄帆. 瞬时纳米沉淀法制备壳聚糖/三聚磷酸钠纳米粒子及其siRNA递送性能评价. 高分子通报, 2025, 38(3), 460–471. DOI: 10.14028/j.cnki.1003-3726.2025.24.304.
Feng, J. Y.; Huang, W. W.; Zhan, Q. Y.; Yan, Y. F.; Wu, C. F. Flash nanoprecipitation fabrication of chitosan/sodium tripolyphosphate nanoparticles for siRNA delivery. Polym. Bull. (in Chinese), 2025, 38(3), 460–471. DOI: 10.14028/j.cnki.1003-3726.2025.24.304.
RNA干扰在癌症和其他多种疾病的治疗中具有广阔的应用前景,亟需发展高效、安全的递送手段来实现RNA干扰技术的临床应用。本研究使用瞬时纳米沉淀技术,制备系列稳定的、基于壳聚糖(CS)和三聚磷酸钠(TPP)的纳米粒子,系统研究了CS浓度、分子量及其与TPP的质量比对CS/TPP纳米粒子的物理化学性质的影响,并初步评价了纳米粒子的基因沉默效率。结果显示,CS浓度为0.3~0.6 g/L和CS/TPP质比为1/1~4/1时,可以形成较为稳定的复合物。其中,CS浓度为0.5 g/L,质量比为2/1时可得到直径为70~100 nm的稳定纳米粒子。稳定的CS/TPP纳米粒子对siRNA的负载效率为75%~90%,细胞毒性低。在2.5 ng siRNA/μL浓度下,负载siRNA的CS/TPP纳米粒子可以引起约30%的目的基因的沉默。相关结果对制备稳定的、小尺寸CS纳米粒子及其 siRNA递送研究具有一定的借鉴意义。
RNA interference (RNAi) holds great potential in the treatment of cancer and various diseases. It is urgent to develop efficient and safe delivery carriers to achieve the clinical application of RNAi-based therapeutics. In this study
Flash nanoprecipitation (FNP) technology was utilized to prepare stable nanoparticles (NPs) based on CS and sodium tripolyphosphate (TPP). The effects of chitosan (CS) concentration
molecular weight
and the mass ratio of CS to TPP on the physicochemical properties of CS/TPP NPs were extensively investigated. Subsequently
suitable NPs were selected for
in vitro
siRNA delivery to HeLa cells. The results showed that stable complex NPs could be formed when the concentration of CS was 0.3-0.6 g/L and the mass ratio of CS to TPP was 1/1-4/1. Among them
stable CS NPs with a diameter of 70-100 nm were obtained at a CS concentration of 0.5 g/L and a CS/TPP mass ratio of 2/1. The selected CS/TPP NPs demonstrated a siRNA loading efficiency of 75%-90% with low cytotoxicity. siRNA-loaded CS NPs induced approximately 30% silencing of the target gene at a siRNA dose of 2.5 ng/μL
indicating a certain level of siRNA delivery efficiency. These results provide valuable insights for preparing stable and small CS NPs for siRNA delivery.
Naldini, L . Gene therapy returns to centre stage . Nature , 2015 , 526 ( 7573 ), 351 – 360 .
Hu, B. ; Weng, Y. H. ; Xia, X. H. ; Liang, X. J. ; Huang, Y. Y . Clinical advances of siRNA therapeutics . J. Gene Med. , 2019 , 21 ( 7 ), e3097 .
颜炳学 , 米玉倩 , 崔庆为 , 仝舟 , Anoliefo Ijeoma Janefrancis , 高山 . RNA干扰药物: 下一代治疗药物? 科学通报 , 2020 , 65 ( 7 ), 540 – 546 .
Kelleher, A. D. ; Cortez-Jugo, C. ; Cavalieri, F. ; Qu, Y. J. ; Glanville, A. R. ; Caruso, F. ; Symonds, G. ; Ahlenstiel, C. L . RNAi therapeutics: an antiviral strategy for human infections . Curr. Opin. Pharmacol. , 2020 , 54 , 121 – 129 .
Yahya, E. B. ; Alqadhi, A. M . Recent trends in cancer therapy: a review on the current state of gene delivery . Life Sci. , 2021 , 269 , 119087 .
张曼 , 牧丹 , 张屏 , 苏日娜 . 天然多糖作为核酸载体的研究 . 高分子通报 , 2024 , ( 3 ), 297 – 308 .
Tatiparti, K. ; Sau, S. ; Kashaw, S. K. ; Iyer, A. K . siRNA delivery strategies: a comprehensive review of recent developments . Nanomaterials , 2017 , 7 ( 4 ), 77 .
Ramasamy, T. ; Munusamy, S. ; Ruttala, H. B. ; Kim, J. O . Smart nanocarriers for the delivery of nucleic acid-based therapeutics: a comprehensive review . Biotechnol. J. , 2021 , 16 ( 2 ), e1900408 .
Hattori, Y. ; Nakamura, M. ; Takeuchi, N. ; Tamaki, K. ; Shimizu, S. ; Yoshiike, Y. ; Taguchi, M. ; Ohno, H. ; Ozaki, K. I. ; Onishi, H . Effect of cationic lipid in cationic liposomes on siRNA delivery into the lung by intravenous injection of cationic lipoplex . J. Drug Target. , 2019 , 27 ( 2 ), 217 – 227 .
樊渝川 , 殷涵 , 李钰 , 余溪 , 唐晓英 , 翁郁华 , 黄渊余 . mRNA疫苗与脂质纳米颗粒递送载体的研究进展 . 科学通报 , 2024 , 69 ( 33 ), 4813 – 4823 .
Wang, H. ; Miao, W. J. ; Wang, F. ; Cheng, Y. Y . A self-assembled coumarin-anchored dendrimer for efficient gene delivery and light-responsive drug delivery . Bioma-cromolecules , 2018 , 19 ( 6 ), 2194 – 2201 .
Ahwazi, R. P. ; Kiani, M. ; Dinarvand, M. ; Assali, A. ; Tekie, F. S. M. ; Dinarvand, R. ; Atyabi, F . Immobilization of HIV-1 TAT peptide on gold nanoparticles: a feasible approach for siRNA delivery . J. Cell. Physiol. , 2020 , 235 ( 3 ), 2049 – 2059 .
Pinese, C. ; Lin, J. Q. ; Milbreta, U. ; Li, M. Q. ; Wang, Y. C. ; Leong, K. W. ; Chew, S. Y . Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing . Acta Biomater. , 2018 , 76 , 164 – 177 .
Zu, H. ; Gao, D. C . Non-viral vectors in gene therapy: recent development, challenges, and prospects . AAPS J. , 2021 , 23 ( 4 ), 78 .
Calvo, P. ; Remuñán-López, C. ; Vila-Jato, J. L. ; Alonso, M. J . Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers . J. Appl. Polym. Sci. , 1997 , 63 ( 1 ), 125 – 132 .
Csaba, N. ; Köping-Höggård, M. ; Alonso, M. J . Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery . Int. J. Pharm. , 2009 , 382 ( 1-2 ), 205 – 214 .
de Britto, D. ; de Moura, M. R. ; Aouada, F. A. ; Mattoso, L. H. C. ; Assis, O. B. G . N , N , N -trimethyl chitosan nanoparticles as a vitamin carrier system . Food Hydrocoll. , 2012 , 27 ( 2 ), 487 – 493 .
Gan, Q. ; Wang, T . Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release . Colloids Surf. B Biointerfaces , 2007 , 59 ( 1 ), 24 – 34 .
Sinha, V. R. ; Singla, A. K. ; Wadhawan, S. ; Kaushik, R. ; Kumria, R. ; Bansal, K. ; Dhawan, S . Chitosan microspheres as a potential carrier for drugs . Int. J. Pharm. , 2004 , 274 ( 1-2 ), 1 – 33 .
Wu, J. ; Wang, Y. P. ; Yang, H. ; Liu, X. Y. ; Lu, Z . Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles . Carbohydr. Polym. , 2017 , 175 , 170 – 177 .
Wu, Y. ; Yang, W. L. ; Wang, C. C. ; Hu, J. H. ; Fu, S. K . Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate . Int. J. Pharm. , 2005 , 295 ( 1-2 ), 235 – 245 .
郑昌亮 , 陈梦婷 , 汪兰 , 曲映红 , 施文正 , 石柳 , 陈胜 , 乔宇 , 李新 , 郭晓嘉 , 吴文锦 , 杨玉平 . 负载鳙鱼肽的壳聚糖/三聚磷酸钠和壳聚糖/亚麻籽胶复合纳米颗粒的稳定性和生物相容性评价 . 食品科学 , 2023 , 44 ( 24 ), 34 – 40 .
Liu, Y. ; Hui, Y. ; Ran, R. ; Yang, G. Z. ; Wibowo, D. ; Wang, H. F. ; Middelberg, A. P. J. ; Zhao, C. X . Synergetic combinations of dual-targeting ligands fo r enhanced in vitro and in vivo tumor targeting . Adv. Healthc. Mater. , 2018 , 7 ( 15 ), 1800106 .
Johnson, B. K. ; Prud’homme, R. K . Chemical processing and micromixing in confined impinging jets . AlChE. J. , 2003 , 49 ( 9 ), 2264 – 2282 .
Li, M. ; Xu, Y. S. ; Sun, J. L. ; Wang, M. W. ; Yang, D. H. ; Guo, X. H. ; Song, H. Y. ; Cao, S. ; Yan, Y. F . Fabrication of charge-conversion nanoparticles for cancer imaging by flash nanoprecipitation . ACS Appl. Mater. Interfaces , 2018 , 10 ( 13 ), 10752 – 10760 .
Shen, H. ; Hong, S. ; Prud’homme, R. K. ; Liu, Y . Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles . J. Nanopart. Res. , 2011 , 13 ( 9 ), 4109 – 4120 .
Ding, S. K. ; Anton, N. ; Vandamme, T. F. ; Serra, C. A . Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview . Expert Opin. Drug Deliv. , 2016 , 13 ( 10 ), 1447 – 1460 .
0
浏览量
118
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构