浏览全部资源
扫码关注微信
上海交通大学化学化工学院,上海 200240
shfwang@sjtu.edu.cn
收稿日期:2024-11-21,
录用日期:2024-12-27,
网络出版日期:2025-02-19,
纸质出版日期:2025-06-20
移动端阅览
任腾, 张宙, 王仕峰. 退役轮胎橡胶的绿色升值循环:从脱硫到解交联. 高分子通报, 2025, 38(6), 857-867.
Ren, T.; Zhang, Z.; Wang, S. F. Green upcycling of the end-of-life tire rubber: from devulcanization to decrosslinking. Polym. Bull. (in Chinese), 2025, 38(6), 857-867.
任腾, 张宙, 王仕峰. 退役轮胎橡胶的绿色升值循环:从脱硫到解交联. 高分子通报, 2025, 38(6), 857-867. DOI: 10.14028/j.cnki.1003-3726.2025.24.351.
Ren, T.; Zhang, Z.; Wang, S. F. Green upcycling of the end-of-life tire rubber: from devulcanization to decrosslinking. Polym. Bull. (in Chinese), 2025, 38(6), 857-867. DOI: 10.14028/j.cnki.1003-3726.2025.24.351.
退役轮胎橡胶的绿色升值循环愈发受到人们的关注,其中制备再生胶用于材料循环是其升值利用的最佳途径之一。但传统脱硫再生过程存在污染大、能耗高等问题,且所得再生胶本质仍为粗填料(约30 μm),难以均匀微纳分散于基体中,限制了其应用范围。基于多重解交联法制备的微纳再生胶主要由液体橡胶(数均分子量约1×10
4
g/mol)和活性炭黑组成,这拓展了再生胶作为反应性增塑剂和纳米填料等高值化应用途径。本文结合具体案例,综述讨论了再生胶的微观结构、物理性能和高值化应用之间的关系,明确了降解、脱硫和解交联的定义,梳理了三者之间的关系,并阐述了回收轮胎橡胶从脱硫法向解交联法演变的必要性。同时,梳理了退役轮胎主要的回收方法及其局限性,并展望了未来的研究方向,旨在为其的高值化循环利用提供借鉴。
The green upcycling of end-of-life tires rubber has attracted increasing attention. The production of reclaimed rubber for material recycling is one of the most promising recycling ways. However
traditional reclamation processes are associated with significant pollution and high energy consumption. Additionally
the reclaimed rubber is in the form of a coarse filler (
ca
. 30 µm)
which is difficult to disperse uniformly in the matrix
limiting its potential applications. The micro-nano reclaimed rubber
prepared
via
the multiple decrosslinking method
consists of liquid rubber (with
M
n
ca
. 1×10
4
g/mol) and reactive carbon black (with micro-nano scale). This development opens up new high-value applications for reclaimed rubber as both a reactive plasticizer and a nano-filler. This review discusses the relationship between the microstructure
physical properties
and high-value applications of reclaimed rubber
using specific case studies. The definitions of degradation
devulcanization and decrosslinking are clarified
the relationship between them is sorted out
and the necessity of the evolution of recycled tire rubber from desulfurization to decrosslinking is described. Furthermore
the main methods for recycling end-of-life tires and their limitations are reviewed
with a forward-looking perspective on future research directions. This paper aims to provide a reference for the high-value recycling of end-of-life tires.
Adhikari, B. ; De, D. ; Maiti, S . Reclamation and recycling of waste rubber . Prog. Polym. Sci. , 2000 , 25 ( 7 ), 909 – 948 .
Jang, J. W. ; Yoo, T. S. ; Oh, J. H. ; Iwasaki, I . Discarded tire recycling practices in the United States, Japan and Korea . Resour. Conserv. Recycl. , 1998 , 22 ( 1-2 ), 1 – 14 .
Hita, I. ; Arabiourrutia, M. ; Olazar, M. ; Bilbao, J. ; Arandes, J. M. ; Castaño, P . Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires . Renew. Sustain. Energy Rev. , 2016 , 56 , 745 – 759 .
Arabiourrutia, M. ; Lopez, G. ; Artetxe, M. ; Alvarez, J. ; Bilbao, J. ; Olazar, M . Waste tyre valorization by catalytic pyrolysis — a review . Renew. Sustain. Energy Rev. , 2020 , 129 , 109932 .
Ren, T. ; Song, P. ; Yang, W. ; Formela, K. ; Wang, S. F . Reinforcing and plasticizing effects of reclaimed rubber on the vulcanization and properties of natural rubber . J. Appl. Polym. Sci. , 2023 , 140 ( 10 ), e53580 .
Wang, Z. F. ; Pan, C. ; Hu, Y. ; Zeng, D. P. ; Huang, M. ; Jiang, Y. T . High-quality ground tire rubber production from scrap tires by using supercritical carbon dioxide jet pulverization assisted with diphenyl disulfide . Powder Technol. , 2022 , 398 , 117061 .
Dong, H. ; Zhong, J. ; Isayev, A. I . Manufacturing polypropylene (PP)/waste EPDM thermoplastic elastomers using ultrasonically aided twin-screw extrusion . Polymers , 2021 , 13 ( 2 ), 259 .
Pérez-Campos, R. ; Fayos-Fernández, J. ; Monzó-Cabrera, J. ; Martín Salamanca, F. ; López Valentín, J. ; Catalá-Civera, J. M. ; Plaza-González, P. ; Sánchez-Marín, J. R . Dynamic permittivity measurement of ground-tire rubber (GTR) during microwave-assisted devulcanization . Polymers , 2022 , 14 ( 17 ), 3543 .
Romine, R. A. ; Romine, M. F . Rubbercycle: a bioprocess for surface modification of waste tyre rubber . Polym. Degrad. Stabil. , 1998 , 59 ( 1-3 ), 353 – 358 .
Grigoryeva, O. ; Fainleib, A. ; Starostenko, O. ; Danilenko, I. ; Kozak, N. ; Dudarenko, G . Ground tire rubber (GTR) reclamation: virgin rubber/reclaimed GTR (RE) vulcanizates . Rubber Chem. Technol. , 2004 , 77 ( 1 ), 131 – 146 .
Ahmad Hassan, A. ; Zhang, Z. ; Formela, K. ; Wang, S. F . Thermo-oxidative exfoliation of carbon black from ground tire rubber as potential reinforcement in green tires . Compos. Sci. Technol. , 2021 , 214 , 108991 .
Leblanc, J. L . Rubber-filler interactions and rheological properties in filled compounds . Prog. Polym. Sci. , 2002 , 27 ( 4 ), 627 – 687 .
Bin Samsuri, A . Degradation of natural rubber and synthetic elastomers . Shreir’s Corrosion . Amsterdam : Elsevier , 2010 , 2407 – 2438 .
Robertson, C. G. ; Hardman, N. J . Nature of carbon black reinforcement of rubber: perspective on the original polymer nanocomposite . Polymers , 2021 , 13 ( 4 ), 538 .
Payne, A. R. ; Whittaker, R. E . Low strain dynamic properties of filled rubbers . Rubber Chem. Technol. , 1971 , 44 ( 2 ), 440 – 478 .
Leblanc, J. L. ; Stragliati, B . An extraction kinetics method to study the morphology of carbon black filled rubber compounds . J. Appl. Polym. Sci. , 1997 , 63 ( 8 ), 959 – 970 .
Ghosh, R. ; Mani, C. ; Krafczyk, R. ; Schnell, R. ; Paasche, A. ; Talma, A. ; Blume, A. ; Dierkes, W. K . New route of tire rubber devulcanization using silanes . Polymers , 2023 , 15 ( 13 ), 2848 .
Simon, D. Á. ; Bárány, T . Microwave devulcanization of ground tire rubber and its improved utilization in natural rubber compounds . ACS Sustain. Chem. Eng. , 2023 , 11 ( 5 ), 1797 – 1808 .
于晓晓 . 微纳化胶粉改性沥青的制备与高性能化应用 . 博士学位论文 , 上海 : 上海交通大学 , 2023 .
Song, P. ; Wan, C. Y. ; Xie, Y. L. ; Zhang, Z. ; Wang, S. F . Stepwise exfoliation of bound rubber from carbon black nanoparticles and the structure characterization . Polym. Test. , 2018 , 71 , 115 – 124 .
Akkouche, N. ; Balistrou, M. ; Loubar, K. ; Awad, S. ; Tazerout, M . Heating rate effects on pyrolytic vapors from scrap truck tires . J. Anal. Appl. Pyrolysis , 2017 , 123 , 419 – 429 .
Wen, Y. X. ; Bao, Z. X. ; Liu, Z. Z. ; Li, D. K. ; Hu, H. Q. ; Jin, L. J . Interaction during co-pyrolysis of different rubbers using rapid infrared-heating fixed bed: products distribution, tar quality and tar composition . Fuel , 2024 , 364 , 131065 .
Qi, J. W. ; Hu, M. ; Xu, P. C. ; Zhu, F. G. ; Yuan, H. R. ; Wang, Y. J. ; Chen, Y . Study on pyrolysis of waste tires and condensation characteristics of products in a pilot scale screw-propelled reactor . Fuel , 2023 , 353 , 129225 .
关兴章 , 刘士兵 , 孙代军 , 关武军 , 关远洪 , 黄克金 , 肖小平 , 杨云涛 , 颜永科 , 金保川 . 一种绿色环保轮胎再生胶生产工艺 . 中国专利 , CN105461956A . 2025-02-07 .
Chittella, H. ; Yoon, L. W. ; Ramarad, S. ; Lai, Z. W . Biological degradation of natural rubber glove by gram-negative bacteria klebsiella aerogenes . Environ. Process. , 2024 , 11 ( 1 ), 18 .
Sato, S. ; Honda, Y. ; Kuwahara, M. ; Kishimoto, H. ; Yagi, N. ; Muraoka, K. ; Watanabe, T . Microbial scission of sulfide linkages in vulcanized natural rubber by a white rot basidiomycete, ceriporiopsis subvermispora . Biomacromolecules , 2004 , 5 ( 2 ), 511 – 515 .
Xiang, H. P. ; Qian, H. J. ; Lu, Z. Y. ; Rong, M. Z. ; Zhang, M. Q . Crack healing and reclaiming of vulcanized rubber by triggering the rearrangement of inherent sulfur crosslinked networks . Green Chem. , 2015 , 17 ( 8 ), 4315 – 4325 .
Wu, X. Y. ; Wang, S. F. ; Dong, R. K . Lightly pyrolyzed tire rubber used as potential asphalt alternative . Constr. Build. Mater. , 2016 , 112 , 623 – 628 .
Shi, J. W. ; Zou, H. ; Ding, L. L. ; Li, X. L. ; Jiang, K. ; Chen, T. ; Zhang, X. D. ; Zhang, L. Q. ; Ren, D. Y . Continuous production of liquid reclaimed rubber from ground tire rubber and its application as reactive polymeric plasticizer . Polym. Degrad. Stabil. , 2014 , 99 , 166 – 175 .
Zhang, Y. X. ; Zhang, Z. ; Wemyss, A. M. ; Wan, C. Y. ; Liu, Y. T. ; Song, P. ; Wang, S. F . Effective thermal-oxidative reclamation of waste tire rubbers for producing high-performance rubber composites . ACS Sustain. Chem. Eng. , 2020 , 8 ( 24 ), 9079 – 9087 .
Parasuram, B. ; Sundaram, S. ; Sathiskumar, C. ; Karthikeyan, S . Synthesis of multi-walled carbon nanotubes using tire pyrolysis oil as a carbon precursor by spray pyrolysis method . Inorg. Nano Met. Chem. , 2018 , 48 ( 2 ), 103 – 106 .
Zhang, Y. S. ; Wu, C. F. ; Nahil, M. A. ; Williams, P . Pyrolysis-catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen . Energy Fuels , 2015 , 29 ( 5 ), 3328 – 3334 .
Dimpe, K. M. ; Ngila, J. C. ; Nomngongo, P. N . Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater . Cogent Eng. , 2017 , 4 ( 1 ), 1330912 .
Li, L. ; Liu, S. X. ; Zhu, T . Application of activated carbon derived from scrap tires for adsorption of Rhodamine B . J. Environ. Sci. , 2010 , 22 ( 8 ), 1273 – 1280 .
Liu, Z. H. ; Yu, Q. ; Zhao, Y. L. ; He, R. H. ; Xu, M. ; Feng, S. H. ; Li, S. D. ; Zhou, L. ; Mai, L. Q . Silicon oxides: a promising family of anode materials for lithium-ion batteries . Chem. Soc. Rev. , 2019 , 48 ( 1 ), 285 – 309 .
Martínez, J. D. ; Puy, N. ; Murillo, R. ; García, T. ; Navarro, M. V. ; Mastral, A. M . Waste tyre pyrolysis–A review . Renew. Sustain. Energy Rev. , 2013 , 23 , 179 – 213 .
Liang, Y. B . Preparation method of reclaimed rubber . China patent , CN108129721A . 2018-06-08 .
常明丰 , 刘志玲 , 张艺行 , 裴建中 , 张久鹏 , 熊锐 , 朱玉芳 , 熊建波 , 范志宏 , 刘虎军 . 一种环保型废旧橡胶再生剂及其制备方法 . 中国专利 , CN113337002A . 2021-09-03 .
盛凯 , 周鹏程 , 邹亮 , 朱世杰 , 李青青 , 王喻晶 , 孙贺贺 . 一种脱硫过程中不添加任何助剂的再生胶及其制备方法 . 中国专利 , CN110591148A . 2019-12-20 .
Isayev, A. I. ; Yushanov, S. P. ; Chen, J . Ultrasonic devulcanization of rubber vulcanizates. I. Process model . J. Appl. Polym. Sci. , 1996 , 59 ( 5 ), 803 – 813 .
Chowdhary, P. ; Shukla, G. ; Raj, G. ; Ferreira, L. F. R. ; Bharagava, R. N . Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research . SN Appl. Sci. , 2018 , 1 ( 1 ), 45 .
Smith, R. F. ; Boothroyd, S. C. ; Thompson, R. L. ; Khosravi, E . A facile route for rubber breakdown via cross metathesis reactions . Green Chem. , 2016 , 18 ( 11 ), 3448 – 3455 .
Sirocic, A. P. ; Florijanic, F. ; Sokman, M. ; Dogancic, A . Recycling of waste rubber by devulcanization process . Kem Ind , 2019 , 68 ( 5-6 ), 189 – 195 .
Mayo, F. R. ; Heller, J. ; Walrath, R. L. ; Irwin, K. C . Accelerated oxidations of polyisoprene. Ⅱ. Effects of hydrazines, sulfur compounds, and phenyl- β -napthylamine in solution . Rubber Chem. Technol. , 1968 , 41 ( 2 ), 289 – 295 .
Kawabata, N. ; Yamashita, S. ; Furukawa, Y . Reclamation of vulcanized rubbers by chemical degradation. IX. Oxidative degradation of cis -1,4-polyisoprene by phenylhydrazine-iron(Ⅱ) chloride system . Bull. Chem. Soc. Jpn. , 1978 , 51 ( 2 ), 625 – 628 .
Kawabata, N. ; Okuyama, B. ; Yamashita, S . Reclamation of vulcanized rubber by chemical degradation. XV. Degradation of vulcanized synthetic isoprene by the phenylhydrazine–iron (Ⅱ) chloride system . J. Appl. Polym. Sci. , 1981 , 26 ( 4 ), 1417 – 1419 .
Lapkovskis, V. ; Mironovs, V. ; Kasperovich, A. ; Myadelets, V. ; Goljandin, D . Crumb rubber as a secondary raw material from waste rubber: a short review of end-of-life mechanical processing methods . Recycling , 2020 , 5 ( 4 ), 32 .
Zhang, Z. ; Zhang, Y. X. ; Li, J. Y. ; Ahmad Hassan, A. ; Wang, S. F . Accelerated liquefaction of vulcanized natural rubber by thermo-oxidative degradation . Polym. Bull. , 2022 , 79 ( 3 ), 1767 – 1786 .
Cheng, X. Y. ; Song, P. ; Zhao, X. Y. ; Peng, Z. L. ; Wang, S. F . Liquefaction of ground tire rubber at low temperature . Waste Manag. , 2018 , 71 , 301 – 310 .
Song, P. ; Wan, C. Y. ; Xie, Y. L. ; Formela, K. ; Wang, S. F . Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect . Waste Manag. , 2018 , 78 , 238 – 248 .
Sombatsompop, N. ; Kumnuantip, C . Comparison of physical and mechanical properties of NR/carbon black/reclaimed rubber blends vulcanized by conventional thermal and microwave irradiation methods . J. Appl. Polym. Sci. , 2006 , 100 ( 6 ), 5039 – 5048 .
杨尚毅 , 纪雪华 , 韩启龙 , 凌峰 . 液体再生胶在全钢工程机械轮胎胎面胶中的应用 . 轮胎工业 , 2023 , 43 ( 8 ), 476 – 479 .
Ding, X. H. ; Ma, T. ; Zhang, W. G. ; Zhang, D. Y . Experi-mental study of stable crumb rubber asphalt and asphalt mixture . Constr. Build. Mater. , 2017 , 157 , 975 – 981 .
Carpani, C. ; Bocci, E. ; Prosperi, E. ; Bocci, M . Evaluation of the rheological and performance behaviour of bitumen modified with compounds including crumb rubber from waste tires . Constr. Build. Mater. , 2022 , 361 , 129679 .
张小利 , 张文刚 , 杜旭斌 . 脱硫橡胶沥青及其混合料性能研究 . 科学技术与工程 , 2013 , 13 ( 17 ), 5046 – 5049 .
Yu, X. X. ; Xie, Y. L. ; Yao, H. R. ; Wang, S. F . Excellent low temperature performance for modified asphalt by finely dispersed sidewall tire rubber . Constr. Build. Mater. , 2023 , 392 , 131939 .
Wang, Q. ; Li, S. ; Wu, X. Y. ; Wang, S. F. ; Ouyang, C. F . Weather aging resistance of different rubber modified asphalts . Constr. Build. Mater. , 2016 , 106 , 443 – 448 .
Wiessner, S. ; Michael, H. ; Mennig, G . Thermoplastic elastomer from rubber crumb and polypropylene . Kautsch. Gummi Kunstst. , 2003 , 56 , 514 – 518 .
郑庆余 , 张新星 , 卢灿辉 , 梁梅 . 动态硫化制备高密度聚乙烯/脱硫轮胎胶粉热塑性弹性体 . 高分子材料科学与工程 , 2010 , 26 ( 7 ), 147 – 149 .
0
浏览量
49
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构