浏览全部资源
扫码关注微信
1.华东理工大学材料科学与工程学院,上海 200237
2.华东理工大学教务处,上海 200237
tengxin@ecust.edu.cn
收稿日期:2024-12-02,
录用日期:2025-01-27,
网络出版日期:2025-03-25,
纸质出版日期:2025-06-20
移动端阅览
佘砚, 庄启昕, 张浩然, 左沛元, 顾金楼, 滕鑫. 数智化时代生成式AI助力材料专业实验课程探索研究. 高分子通报, 2025, 38(6), 958-966.
She, Y.; Zhuang, Q. X.; Zhang, H. R.; Zuo, P. Y.; Gu, J. L.; Teng, X. Exploration and research on the application of generative AI in supporting materials science experimental courses in the era of digital intelligence. Polym. Bull. (in Chinese), 2025, 38(6), 958-966.
佘砚, 庄启昕, 张浩然, 左沛元, 顾金楼, 滕鑫. 数智化时代生成式AI助力材料专业实验课程探索研究. 高分子通报, 2025, 38(6), 958-966. DOI: 10.14028/j.cnki.1003-3726.2025.24.366.
She, Y.; Zhuang, Q. X.; Zhang, H. R.; Zuo, P. Y.; Gu, J. L.; Teng, X. Exploration and research on the application of generative AI in supporting materials science experimental courses in the era of digital intelligence. Polym. Bull. (in Chinese), 2025, 38(6), 958-966. DOI: 10.14028/j.cnki.1003-3726.2025.24.366.
在数智化时代,生成式人工智能(generative AI,简称“生成式AI”)技术凭借其在数据分析和智能反馈等领域的优势,为高校实验课程的建设带来了全新的视角和解决方案。本文以华东理工大学开发的高分子化学实验AI助手为例,探索了基于大语言模型和检索增强生成技术的智能教学解决方案,该AI助手为实验教学创设因材施教的教学新模式、打造沉浸式学习新形态,并推动了智能化教学管理新变革,有效解决了传统实验教学中资源受限、指导不足等难题。通过实验教学效果评价,“使用AI助手组”的学生绝大多数认为AI助手能显著提升学生的理论知识掌握和实验操作能力,教学模式效果良好,验证了生成式AI助力材料专业实验课程的可行性与优势,为推动高等教育数智化转型提供了创新范例,也为生成式AI推广应用到更多课程教学提供了有益参考。
In the era of digital intelligence
the advantages of generative AI technology in data analysis
intelligent feedback
and other areas provide a new perspectives and solutions for the development of experimental courses in higher education. This paper takes the polymer chemistry experiment AI assistant developed by the East China University of Science and Technology as an example to explore an intelligent teaching solution based on LLM+RAG technology. The AI assistant creates a personalized teaching model
builds an immersive learning experience
and promotes a new paradigm in intelligent teaching management
addressing the challenges of resource limitations and inadequate guidance in traditional experimental teaching. Through the evaluation of experimental teaching outcomes
the majority of students in the “AI-assisted group” believed that the AI assistant significantly enhanced their theoretical knowledge and experimental skills
and the teaching model showed positive results. This study validates the feasibility and advantages of Generative AI in supporting experimental courses in materials science
providing an innovative example for the digital transformation of higher education
and offering valuable insights for the broader application of Generative AI in course teaching.
喻国明 . 生成式AI: 传播领域的新质生产力: 传播的技术革命与传播实践逻辑的嬗变 . 阅江学刊 , 2024 , 16 ( 6 ), 27 – 35 .
Lucci, S. ; Musa, S. M. ; Kopec, D . 人工智能 . 北京 : 人民邮电出版社 , 2023 . 18 – 45 .
喻国明 , 李钒 , 滕文强 . AI+教育: 人工智能时代的教学模式升维与转型 . 宁夏社会科学 , 2024 , ( 2 ), 191 – 198 .
苏小红 , 苗启广 , 陈文宇 . 基于AI赋能和产教融合提升程序设计能力的个性教学模式 . 中国大学教学 , 2023 , ( 6 ), 4 – 9 .
沈丽燕 , 李萌 , 张紫徽 , 杨玉辉 , 张宇燕 . 基于AI技术的高校智慧教学生态体系的构建与应用: 以浙江大学为例 . 现代教育技术 , 2022 , 32 ( 12 ), 85 – 92 .
夏天 , 李又兵 , 吕文晏 , 杨屹 , 朱海娥 . 工程教育背景下《高分子物理》多元化课程评价体系探讨 . 高分子通报 , 2024 , 37 ( 7 ), 974 – 978 .
蒋里 . AI驱动教育改革: ChatGPT/GPT的影响及展望 . 华东师范大学学报(教育科学版) , 2023 , 41 ( 7 ), 143 – 150 .
覃玉荣 . AI时代OBE理念下大学英语课程体系建构与教学模式探索 . 大学 , 2022 , ( 32 ), 46 – 49 .
Epstein, Z. ; Hertzmann, A. ; Creativity, I. O. H. ; Akten, M. ; Farid, H. ; Fjeld, J. ; Frank, M. R. ; Groh, M. ; Herman, L. ; Leach, N. ; Mahari, R. ; Pentland, A. S. ; Russakovsky, O. ; Schroeder, H. ; Smith, A . Art and the science of generative AI . Science , 2023 , 380 ( 6650 ), 1110 – 1111 .
王绪强 , 胡凡刚 . AI教师赋能课堂教学的限度与超越 . 电化教育研究 , 2022 , 43 ( 8 ), 29 – 35 .
Baİdoo-Anu, D. ; Owusu Ansah, L . Education in the era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning . J. AI , 2023 , 7 ( 1 ), 52 – 62 .
0
浏览量
28
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构