浏览全部资源
扫码关注微信
长春工业大学化学工程学院,长春 130012
wangshiwei@ccut.edu.cn
收稿日期:2024-12-23,
录用日期:2025-02-08,
网络出版日期:2025-03-28,
纸质出版日期:2025-06-20
移动端阅览
杨慧敏, 孙思航, 杨婉婷, 王伟, 张渊博, 尚小红, 王世伟. 一种缺陷可检测聚氨酯底涂剂的制备及应用研究. 高分子通报, 2025, 38(6), 922-930.
Yang, H. M.; Sun, S. H.; Yang, W. T.; Wang, W.; Zhang. Y. B.; Shang, X. H.; Wang, S. W. Preparation and application research of a defect-detectable polyurethane primer. Polym. Bull. (in Chinese), 2025, 38(6), 922-930.
杨慧敏, 孙思航, 杨婉婷, 王伟, 张渊博, 尚小红, 王世伟. 一种缺陷可检测聚氨酯底涂剂的制备及应用研究. 高分子通报, 2025, 38(6), 922-930. DOI: 10.14028/j.cnki.1003-3726.2025.24.389.
Yang, H. M.; Sun, S. H.; Yang, W. T.; Wang, W.; Zhang. Y. B.; Shang, X. H.; Wang, S. W. Preparation and application research of a defect-detectable polyurethane primer. Polym. Bull. (in Chinese), 2025, 38(6), 922-930. DOI: 10.14028/j.cnki.1003-3726.2025.24.389.
为了解决在汽车安装和使用过程中,被密封胶覆盖的底涂剂缺陷难以检测的问题,本研究以氧化石墨烯以及含有萘环的聚氨酯为原料,通过构建
π
-
π
共轭体系,成功合成了一种高性能导电聚氨酯底涂剂(MCPU-GO)。通过红外光谱分析、力学性能及导电性能的表征,结果表明该底涂剂的粘接强度可达到1.03 MPa (Henkel为0.8 MPa),表干时间小于2 min,电阻为4.2×10
5
Ω。此外,该底涂剂能通过检测其局部或者整体的底涂剂涂层电流/电阻数值的变化实现底涂层的破损检测,为汽车玻璃安装可靠性的检测提供了一种简单快捷的方法。这种缺陷可检测的聚氨酯底涂剂的制备方法具有良好的市场应用前景。
In order to solve the problem of difficulty in detecting the defects of primers covered by sealants during the installation and use of automobiles
this study used graphene oxide and polyurethane containing naphthalene rings as raw materials to independently synthesize a high-performance conductive polyurethane primer (MCPU-GO) by constructing a
π
-
π
conjugate system. Through infrared spectroscopy analysis and characterization of the mechanical and electrical conductivity properties
it was found that the adhesive strength of this primer can reach 1.03 MPa (Henkel’s is 0.8 MPa)
the surface drying time is less than 2 min
and the resistance is 4.2×10
5
Ω. It can detect damage to the primer layer by detecting changes in the current/resistance values of the local or overall primer coating
providing a simple and rapid method for detecting the reliability of automotive glass installations. The preparation method of this defect-detectable polyurethane primer has promising prospects for market applications.
Ashrafizadeh, H. ; McDonald, A. ; Mertiny, P . Deposition of electrically conductive coatings on castable polyurethane elastomers by the flame spraying process . J. Therm. Spray Technol. , 2016 , 25 ( 3 ), 419 – 430 .
Zhou, Y. ; Rossi, B. ; Zhou, Q. X. ; Hihara, L. ; Dhinojwala, A. ; Foster, M. D . Thin plasma-polymerized coatings as a primer with polyurethane topcoat for improved corrosion resistance . Langmuir , 2020 , 36 ( 4 ), 837 – 843 .
Zhang, S. Q. ; Andre, J. S. ; Hsu, L. ; Toolis, A. ; Esarey, S. L. ; Li, B. L. ; Chen, Z . Nondestructive in situ detection of chemical reactions at the buried interface between polyurethane and isocyanate-based primer . Macromolecules , 2020 , 53 ( 22 ), 10189 – 10197 .
Fang, Z. ; Huang, L. J. ; Fu, J. J . Research status of graphene polyurethane composite coating . Coatings , 2022 , 12 ( 2 ), 264 .
高猛 , 潘伟超 , 许晓荣 , 郝紫涛 , 王书传 . 石墨烯改性锌粉环氧底漆的贮存稳定性及涂层盐雾性能研究 . 材料保护 , 2021 , 54 ( 5 ), 84 – 88 .
张勇 , 陆瑜翀 , 李瑶 , 马玉民 , 蔡耀武 , 王建斌 . 聚氨酯底涂剂的制备与性能研究 . 中国胶粘剂 , 2023 , 32 ( 4 ), 50 – 53 .
刘壮壮 , 林星 , 林中祥 . 玻璃基材用聚氨酯底涂剂的合成与性能研究 . 中国胶粘剂 , 2018 , 27 ( 5 ), 41 – 45 .
Zhu, X. L. ; Li, Q. Y. ; Wang, L. ; Wang, W. ; Liu, S. K. ; Wang, C. H. ; Xu, Z. W. ; Liu, L. S. ; Qian, X. M . Current advances of polyurethane/graphene composites and its prospects in synthetic leather: a review . Eur. Polym. J. , 2021 , 161 , 110837 .
张国旺 , 魏培欣 , 龚明达 , 宗艳 , 丁柏 , 曾强 , 王海涛 . 轨道车辆车窗胶接缺陷的超声检测技术研究 . 计算机测量与控制 , 2022 , 30 ( 5 ), 37 – 42 .
李思雨 , 王玉曼 , 廖昌斌 , 李美佳 , 王宁远 , 赵治巨 . 石墨烯改性水性丙烯酸防腐涂料的制备及性能研究 . 当代化工研究 , 2024 , ( 7 ), 84 – 86 .
Gao, H. ; Xu, J. N. ; Liu, S. ; Song, Z. Q. ; Zhou, M. ; Liu, S. W. ; Li, F. ; Li, F. H. ; Wang, X. D. ; Wang, Z. X. ; Zhang, Q. X . Stretchable, self-healable integrated conductor based on mechanical reinforced graphene/polyurethane composites . J. Colloid Interface Sci. , 2021 , 597 , 393 – 400 .
李奕宽 , 崔旭 . 石墨烯/聚氨酯脲多孔薄膜耐腐蚀性能研究 . 化工设计通讯 , 2024 , 50 ( 2 ), 21 – 23 .
郭福成 , 李静 . 石墨烯基聚合物复合涂层及湿法涂覆在金属双极板领域的应用进展 . 广州化学 , 2024 , 49 ( 3 ), 25 – 30 .
张旗 , 刘太奇 . 环保型炭黑基电热碳浆的制备及石墨烯对其电热性能的影响 . 高分子材料科学与工程 , 2018 , 34 ( 9 ), 160 – 164 .
袁永 . 石墨烯增强氰酸酯树脂材料制备及导热导电分析 . 山西化工 , 2024 , 44 ( 9 ), 42 – 43 .
Zhang, X. ; Zhang, M. ; Han, D. ; Ma, C. ; Su, X. L . Preparation and thermal conductivity of alumina/graphene/waterborne polyurethane composite . Coatings , 2024 , 14 ( 6 ), 717 .
Triwulandari, E. ; Ghozali, M. ; Restu, W. K. ; Meliana, Y. ; Septiyanti, M. ; Haryono, A . Hydrolysis and condensation of alkoxysilane for the preparation of hybrid coating based on polyurethane/polysiloxane-modified epoxy . Polym. Sci. Ser. B , 2019 , 61 ( 2 ), 180 – 188 .
Nguyen, Q. B. ; Pham, N. C. ; Nguyen, T. H. C. ; Doan, T. D. ; Duong, T. L. ; Pham, N. N. ; Nguyen, V. N. M. ; Cao, V. H. ; Tran, D. L. ; Dao, N. N . Porous nonhierarchical CeO 2 -SiO 2 nanocomposites for improving the ultraviolet resistance capacity of polyurethane coatings . Mater. Res. Express , 2021 , 8 ( 5 ), 056405 .
Made Joni, I. ; Vanitha, M. ; Panatarani, C. ; Faizal, F . Dispersion of amorphous silica nanoparticles via beads milling process and their particle size analysis, hydrophobicity and anti-bacterial activity . Adv. Powder Technol. , 2020 , 31 ( 1 ), 370 – 380 .
Hai, L. H . The effect of SiO 2 nanoparticles in poly-urethane paint formulation on metal surfaces . Int. J. Sci. Res. Arch. , 2021 , 3 ( 1 ), 31 – 36 .
程忠平 , 徐兴敏 , 莫耀南 , 代培 . 一种聚氨酯底涂剂的制备 . 河南化工 , 2021 , 38 ( 12 ), 21 – 22 .
Chen, Q. ; Li, X. Y. ; Yang, Z. Y. ; Meng, X. Q. ; Zhao, Y. H. ; Kang, M. Q. ; Li, Q. F. ; Wang, J. Z. ; Wang, J. W. ; Wang, J. Y . The reinforcement of polyurethane by mini-sized graphene with superior performances . Chem. Eng. J. , 2024 , 482 , 148668 .
刘海萍 , 毕四富 , 熊云奇 , 姜杰 , 滕祥国 , 刘德丽 , 曹立新 . 石墨烯水性环氧防腐涂料技术在电化学工程实验教学中的应用 . 广东化工 , 2024 , 51 ( 18 ), 240 – 243 .
Huang, X. Y. ; Mo, Y. ; Wu, W. C. ; Ye, M. J. ; Hu, C. Q . Preparation and properties of waterborne polyurethane/carbon nanotube/graphene/cellulose nanofiber composites . Processes , 2024 , 12 ( 9 ), 1913 .
Ning, Y. J. ; Zhu, Z. R. ; Cao, W. W. ; Wu, L. ; Jing, L. C. ; Wang, T. ; Yuan, X. T. ; Teng, L. H. ; Bin, P. S. ; Geng, H. Z . Anti-corrosion reinforcement of waterborne polyurethane coating with polymerized graphene oxide by the one-pot method . J. Mater. Sci. , 2021 , 56 ( 1 ), 337 – 350 .
Ma, C. ; Zhang, W. L. ; Wang, L. H. ; Guo, Z. ; Jiang, Y. ; Shan, Y. ; Chen, J. Y. ; Wang, Y. ; Sin, L. T . Preparation and characterization of a graphene hybridizing polyurethane damping composite . Sci. Eng. Compos. Mater. , 2022 , 29 ( 1 ), 140 – 150 .
关悦瑜 , 贾晓莹 , 徐鑫 . 石墨烯增强环氧树脂胶黏剂的研究进展 . 黑龙江科学 , 2024 , 15 ( 16 ), 25 – 26 .
Yang, X. ; Su, Z. A. ; Huang, Q. Z. ; Chai, L. Y. ; Zhong, P. ; Xue, L . A zirconium carbide coating on graphite prepared by reactive melt infiltration . J. Cent. South Univ. , 2014 , 21 ( 2 ), 472 – 476 .
Zhao, D. ; Zhu, G. D. ; Ding, Y. ; Zheng, J. P . Construction of a different polymer chain structure to study π - π interaction between polymer and reduced graphene oxide . Polymers , 2018 , 10 ( 7 ), 716 .
Kim, H. ; Lee, S . Electrical properties of graphene/waterborne polyurethane composite films . Fibres. Polym. , 2017 , 18 ( 7 ), 1304 – 1313 .
Wang, C. ; Lu, Y. ; Chang, Z. Y. ; Gao, Y. M. ; Zhang, H . Air-assisted drag reduction promoted by hydrophobic attr-action . J. Dispers. Sci. Technol. , 2023 , 44 ( 11 ), 2180 – 2189 .
周柄男 , 丁秋炜 , 张宇 , 张昕 , 滕大勇 , 王昊 , 王超 . 还原氧化石墨烯亲油疏水材料的制备及性能评价 . 当代化工 , 2024 , 53 ( 4 ), 846 – 850 .
Zhao, X. ; Qi, Y. H. ; Zhang, Z. P . Influence of modified graphene oxide on the antifouling performance of waterborne polyurethane coatingscontaining amphiphilic honeycomb surface . J. Coat. Technol. Res. , 2023 , 20 ( 2 ), 725 – 740 .
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构