浏览全部资源
扫码关注微信
武汉理工大学,材料复合新技术国家重点实验室,武汉 430070
*韩颖超,E-mail: hanyingchao@whut.edu.cn
收稿日期:2025-01-08,
录用日期:2025-03-12,
纸质出版日期:2025
移动端阅览
王飞, 龙玺, 韩颖超. 聚乳酸/纳米羟基磷灰石复合材料热压成型制备及性能研究. 高分子通报, doi: 10.14028/j.cnki.1003-3726.2025.25.010
Wang, F.; Long, X.; Han, Y. C. Hot-press molding preparation and properties of poly(lactic acid)/nano-hydroxyapatite composites. Polym. Bull. (in Chinese), doi: 10.14028/j.cnki.1003-3726.2025.25.010
聚乳酸(PLA)是一种具有良好生物可降解性的骨修复材料,但由于缺乏成骨活性,限制了其在医学上的应用效果,通过与成骨活性成分(如纳米羟基磷灰石(nHAP))复合是改善其生物医学性能的一种有效措施。本研究首先采用乳液溶剂挥发法制备PLA/nHAP复合微球,提高复合均匀性,进而以复合微球为原料经低温热压预成型-热处理工艺制备PLA/nHAP复合材料。结果表明,在130 ℃的热处理温度下,复合微球熔融完全,材料变得致密,且nHAP在PLA中良好分散;随着nHAP的质量分数从0%增加到10%,复合材料的力学性能逐渐增强,压缩强度、弯曲强度分别提高了约14%和42%;水接触角从(70.66±0.64)°减小到(56.49±0.50)°,亲水性增加。PLA/nHAP复合材料可以保持稳定的Ca
2+
、PO
4
3−
释放。细胞试验结果表明,PLA/nHAP复合材料无细胞毒性,nHAP的复合促进了成骨细胞的黏附与增殖(7天),且14天后显示出显著地促成骨分化作用。本研究为PLA/nHAP复合材料的制备提供了一种可行的技术方案。
Poly(lactic acid) (PLA)
while recognized as a bone repair material due to its commendable biodegradability
faces constraints in medical application effectiveness stemming from its insufficient osteogenic activity. To enhance its biomedical performance
an efficacious approach involves compounding it with osteogenic active components
such as nano-hydroxyapatite (nHAP). This study initially employs the emulsion solvent evaporation method to fabricate PLA/nHAP composite microspheres
aiming to augment composite homogen
eity. Subsequently
these composite microspheres serve as the raw materials for the preparation of PLA/nHAP composites
undergoing a series of processes including hot-press preforming and heat treatment process. The results demonstrate that
at a heat treatment temperature of 130 ℃
the composite microspheres undergo complete melting
leading to a dense material structure with nHAP evenly distributed within the PLA matrix. As the mass fraction of nHAP escalates from 0% to 10%
there is a gradual enhancement in the mechanical properties of the composite material. Specifically
the compression strength
bending strength
and modulus of elasticity exhibit increases of approximately 14% and 42%
respectively. Additionally
the water contact angle diminishes from (70.66±0.64)° to (56.49±0.50)°
signifying an augmentation in hydrophilicity. Furthermore
the PLA/nHAP composite material maintains a steady release of Ca
2+
and PO
4
3−
. Cellular testing reveals that the PLA/nHAP composite material is non-cytotoxic
and the incorporation of nHAP fosters osteoblast adhesion and proliferation over a 7-day period. After 14 days
significant osteogenic differentiation effects become apparent. In conclusion
this investigation presents a viable technical method for the fabrication of PLA/nHAP composite materials.
Elmowafy, E. M. ; Tiboni, M. ; Soliman, M. E . Biocom-patibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic- co -glycolic acid) micro and nanoparticles . J. Pharm. Investig. , 2019 , 49 ( 4 ), 347 – 380 .
Castro, J. I. ; Araujo-Rodríguez, D. G. ; Valencia-Llano, C. H. ; López Tenorio, D. ; Saavedra, M. ; Zapata, P. A. ; Grande-Tovar, C. D . Biocompatibility assessment of polycaprolactone/polylactic acid/zinc oxide nanoparticle composites under in vivo conditions for biomedical applications . Pharmaceutics , 2023 , 15 ( 9 ), 2196 .
Ranakoti, L. ; Gangil, B. ; Bhandari, P. ; Singh, T. ; Sharma, S. ; Singh, J. ; Singh, S . Promising role of polylactic acid as an ingenious biomaterial in scaffolds, drug delivery, tissue engineering, and medical implants: Research developments, and prospective applications . Molecules , 2023 , 28 ( 2 ), 485 .
Prasad, A. ; Bhasney, S. M. ; Prasannavenkadesan, V. ; Sankar, M. R. ; Katiyar, V . Polylactic acid reinforced with nano-hydroxyapatite bioabsorbable cortical screws for bone fracture treatment . J. Polym. Res. , 2023 , 30 ( 5 ), 177 .
Xia, Y. H. ; Xu, W. ; Zhang, H. B. ; Wu, X. P. ; Dai, H. L . 3D-printing polylactic acid/hydroxyapatite fracture internal fixation plates for bone repair . J. Appl. Polym. Sci. , 2022 , 139 ( 46 ), e53147 .
Larkina, S. A. ; Makarenko, O. A. ; Seletskaya, A. V . Comparison of markers of skin inflammation after injections of polylactic acid and threads based on polylactic acid . J. Educ. Health Sport , 2020 , 10 ( 11 ), 245 – 253 .
Hussain, M. ; Khan, S. M. ; Shafiq, M. ; Abbas, N . A review on PLA-based biodegradable materials for biomedical applications . Giant , 2024 , 18 , 100261 .
Xu, D. ; Xu, Z. X. ; Cheng, L. D. ; Gao, X. H. ; Sun, J. ; Chen, L. Q . Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide . Heliyon , 2022 , 8 ( 6 ), e09748 .
Ran, J. B. ; Jiang, P. ; Sun, G. L. ; Ma, Z. ; Hu, J. X. ; Shen, X. Y. ; Tong, H . Comparisons among Mg, Zn, Sr, and Si doped nano-hydroxyapatite/chitosan composites for load-bearing bone tissue engineering applications . Mater. Chem. Front. , 2017 , 1 ( 5 ), 900 – 910 .
Alshemary, A. Z. ; Pazarçeviren, E. A. ; Dalgic, A. D. ; Tezcaner, A. ; Keskin, D. ; Evis, Z . Nanocrystalline Zn 2+ and SO 4 2– binary doped fluorohydroxyapatite: A novel biomaterial with enhanced osteoconductive and osteoinconductive properties . Mater. Sci. Eng. C , 2019 , 104 , 109884 .
Ullah, I. ; Ali Siddiqui, M. ; Kolawole, S. K. ; Liu, H. ; Zhang, J. ; Ren, L. ; Yang, K . Synthesis, characterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application . Ceram. Int. , 2020 , 46 ( 10 ), 14448 – 14459 .
Xu, X. N. ; Sun, X. H. ; Tian, Y. Y. ; Zhang, L. G. ; Liu, L. B . Osteogenic activity of a micro/nano hierarchical nano-hydroxyapatite coating on zirconium alloy . Mater. Charact. , 2023 , 205 , 113356 .
Mo, X. J. ; Zhang, D. J. ; Liu, K. D. ; Zhao, X. X. ; Li, X. M. ; Wang, W . Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering . Int. J. Mol. Sci. , 2023 , 24 ( 2 ), 1291 .
Bahraminasab, M. ; Doostmohammadi, N. ; Talebi, A. ; Arab, S. ; Alizadeh, A. ; Ghanbari, A. ; Salati, A . 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration . Biomed. Eng. Online , 2022 , 21 ( 1 ), 86 .
Jia, Z. L. ; Ma, H. L. ; Liu, J. Q. ; Yan, X. Y. ; Liu, T. Q. ; Cheng, Y. Y. ; Li, X. Q. ; Wu, S. ; Zhang, J. Y. ; Song, K. D . Preparation and characterization of polylactic acid/nano hydroxyapatite/nano hydroxyapatite/human acellular amniotic membrane (PLA/nHAp/HAAM) hybrid scaffold for bone tissue defect repair . Materials , 2023 , 16 ( 5 ), 1937 .
Wijerathne, H. M. C. S. ; Yan, D. ; Zeng, B. ; Xie, Y. P. ; Hu, H. C. ; Wickramaratne, M. N. ; Han, Y. C . Effect of nano-hydroxyapatite on protein adsorption and cell adhesion of poly(lactic acid)/nano-hydroxyapatite composite microspheres . SN Appl. Sci. , 2020 , 2 ( 4 ), 722 .
Zhang, R. ; Hu, H. L. ; Liu, Y. ; Tan, J. J. ; Chen, W. Q. ; Ying, C. ; Liu, Q. T. ; Fu, X. D. ; Hu, S. F. ; Wong, C. P . Homogeneously dispersed composites of hydroxyapatite nanorods and poly(lactic acid) and their mechanical properties and crystallization behavior . Compos. Part A Appl. Sci. Manuf. , 2020 , 132 , 105841 .
Thanh, D. T. M. ; Trang, P. T. T. ; Huong, H. T. ; Nam, P. T. ; Phuong, N. T. ; Trang, N. T. T. ; Hoang, T. ; Lam, T. D. ; Park, J. S . Fabrication of poly(lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration . Int. J. Nanotechnol. , 2015 , 12 ( 5/6/7 ), 391 .
Boruvka, M. ; Cermak, C. ; Behalek, L. ; Brdlik, P . Effect of in-mold annealing on the properties of asymmetric poly( l -lactide)/poly( d -lactide) blends incorporated with nanohydroxyapatite . Polym. Basel , 2021 , 13 ( 16 ), 2835 .
Chen, W. T. ; Nichols, L. ; Brinkley, F. ; Bohna, K. ; Tian, W. M. ; Priddy, M. W. ; Priddy, L. B . Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds . Mater. Sci. Eng. C , 2021 , 120 , 111686 .
Liu, S. Q. ; Zheng, Y. Y. ; Liu, R. L. ; Tian, C . Preparation and characterization of a novel polylactic acid/hydroxyapatite composite scaffold with biomimetic micro-nanofibrous porous structure . J. Mater. Sci. Mater. Med. , 2020 , 31 ( 8 ), 74 .
Alonso-Fernández, I. ; Haugen, H. J. ; López-Peña, M. ; González-Cantalapiedra, A. ; Muñoz, F . Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review . Acta Biomater. , 2023 , 168 , 1 – 21 .
Shah Mohammadi, M. ; Rezabeigi, E. ; Bertram, J. ; Marelli, B. ; Gendron, R. ; Nazhat, S. N. ; Bureau, M. N . Poly( d , l -lactic acid) composite foams containing phosphate glass particles produced via solid-state foaming using CO 2 for bone tissue engineering applications . Polymers , 2020 , 12 ( 1 ), 231 .
Liang, B. B. ; Feng, T. Y. ; Yuan, X. T. ; Zhao, K. ; Li, C. Y. ; Han, Y. C . Proportion-dependent osteogenic activity of electrospun nano-hydroxyapatite/polylactic acid fiber membrane in vitro and in vivo. Mater. Des. , 2022 , 219 , 110834 .
Kanak, N. A. ; Shahruzzaman, M. ; Islam, M. S. ; Takafuji, M. ; Rahman, M. M. ; Kabir, S. F . Fabrication of electrospun PLA-nHAp nanocomposite for sustained drug release in dental and orthopedic applications . Materials , 2023 , 16 ( 10 ), 3691 .
Anderson, J. M. ; Shive, M. S . Biodegradation and biocompatibility of PLA and PLGA microspheres . Adv. Drug Deliv. Rev. , 2012 , 64 , 72 – 82 .
Du, X. R. ; Yuan, X. T. ; Lin, S. ; Tan, X. Y. ; Han, Y. C . An injectable bone paste of poly(lactic acid)/zinc-doped nano hydroxyapatite composite microspheres for skull repair . Colloids Surf. B Biointerfaces , 2024 , 239 , 113969 .
Yan, D. ; Zeng, B. ; Han, Y. C. ; Dai, H. L. ; Liu, J. ; Sun, Y. L. ; Li, F . Preparation and laser powder bed fusion of composite microspheres consisting of poly(lactic acid) and nano-hydroxyapatite . Addit. Manuf. , 2020 , 34 , 101305 .
Karabulut, A. ; Baştan, F. E. ; Erdoğan, G. ; Üstel, F . Heat treatment’s effects on hydroxyapatite powders in water vapor and air atmosphere . 4 th International Congress in Advances in Applied Physics and Materials Science ( Apmas 2014) . Turkey : Fethiye , 2015 . 020053 .
Liang, J. Z . Toughening and reinforcing in rigid inorganic particulate filled poly(propylene): a review . J. Appl. Polym. Sci. , 2002 , 83 ( 7 ), 1547 – 1555 .
潘亚妮 , 付亚国 . 改性聚乳酸/羟基磷灰石复合材料的制备及性能研究 . 化工新型材料 , 2015 , 43 ( 10 ), 88 – 90 .
Cai, S. X. ; Wu, C. X. ; Yang, W. G. ; Liang, W. F. ; Yu, H. B. ; Liu, L. Q . Recent advance in surface modification for regulating cell adhesion and behaviors . Nanotechnol. Rev. , 2020 , 9 ( 1 ), 971 – 989 .
Aworinde, A. K. ; Adeosun, S. O. ; Oyawale, F. A. ; Akinlabi, E. T. ; Akinlabi, S. A . Comparative effects of organic and inorganic bio-fillers on the hydrophobicity of polylactic acid . Results Eng. , 2020 , 5 , 100098 .
Hou, X. D. ; Zhang, L. ; Zhou, Z. F. ; Luo, X. ; Wang, T. L. ; Zhao, X. Y. ; Lu, B. Q. ; Chen, F. ; Zheng, L. P . Calcium phosphate-based biomaterials for bone repair . J. Funct. Biomater. , 2022 , 13 ( 4 ), 187 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构