浏览全部资源
扫码关注微信
高分子合成与功能构造教育部重点实验室,浙江大学高分子科学与工程学系,杭州 310027
s_yh0411@zju.edu.cn
收稿日期:2025-01-09,
录用日期:2025-03-07,
纸质出版日期:2025-07-20
移动端阅览
宋义虎. 橡胶交联网络非Gaussian链统计力学. 高分子通报, doi: 10.14028/j.cnki.1003-3726.2025.25.012
Song, Y. H. Statistical mechanics of non-gaussian chains for crosslinking network of rubbers. Polym. Bull. (in Chinese), doi: 10.14028/j.cnki.1003-3726.2025.25.012
“橡胶弹性”是《高分子物理》中联系长链分子构象和熵弹性的重要章节之一。现行《高分子物理》教科书以讲授Gaussian链构象和收缩力以及Gaussian链网络熵变和应力为主,附带讲授Gaussian链统计力学的修正,而很少提及非Gaussian链统计力学及其近似表达形式。本文从无规行走问题出发回顾Gaussian链、非Gaussian链统计力学的主要来源与结果,介绍自由连接链、自避无规行走链末端位移分布和统计力学问题,以便让读者认识到Gaussian链网络模型仅是无穷长链Stirling近似结果的特例,而非Gaussian链统计力学在描述交联密度、链刚性、分子间/分子内作用力的贡献方面更有用。
“Rubber elasticity” is one of the important chapters in
Polymer Physics
that connects the conformation and entropy elasticity of long-chain molecules. In the current textbooks of
Polymer Physics
the conformation and contraction force of Gaussian chains
as well as the entropy change and stress of Gaussian chain networks are introduced
with some corrections of Gaussian statistical mechanics
but the non-Gaussian chains statistical mechanics and their approximate expressions are rarely referred to. Reviewed in this article are the sources of statistical mechanics of long Gaussian chains and non-Gaussian chains from the perspective of random walking
the distributions of end-to-end vector of freely jointed chains and self-avoiding random walking chains so as to make readers realize that the Gaussian chain network models are only a special case of the Stirling approximation to infinitely long chains
and that the statistical mechanics of non-Gaussian chains are more useful in describing the contributions of crosslinking density
chain stiffness
and intermolecular and/or intramolecular forces to the rubber elasticity.
Flory, P. J . Network structure and the elastic properties of vulcanized rubber . Chem. Rev. , 1944 , 35 ( 1 ), 51 – 75 .
James, H. M . Statistical properties of networks of flexible chains . J. Chem. Phys. , 1947 , 15 ( 9 ), 651 – 668 .
Guth, E. ; Mark, H . Zur innermolekularen, statistik, insbesondere Bei kettenmolekiilen. I . Monatsh. Für Chem. Und Verwandte Teile Anderer Wissen. , 1934 , 65 ( 1 ), 93 – 121 .
Kuhn, W . Über die gestalt fadenförmiger moleküle in lösungen . Kolloid-Zeitschrift , 1934 , 68 ( 1 ), 2 – 15 .
Pearson, K . The problem of the random walk . Nature , 1905 , 72 ( 1865 ), 294 .
古川淳 . ゴム弾性I . 日本ゴム協会誌 , 1957 , 30 , 909 – 921 .
Rayleigh, L . XXXI. On the problem of random vibrations, and of random flights in one, two, or three dimensions . Lond. Edinb. Dublin Philos. Mag. J. Sci. , 1919 , 37 ( 220 ), 321 – 347 .
Stein, R. S. ; Tobolsky, A. V . An investigation of the relationship between polymer structure and mechanical properties . Text. Res. J. , 1948 , 18 ( 4 ), 201 – 223 .
Saitô, N. ; Okano, K. ; Iwayanagi, S. ; Hideshima, T . Molecular motion in solid state polymers . Solid State Phys. , 1963 , 14 , 343 – 502 .
Treloar, L. R. G . The statistical length of long-chain molecules . Trans. Faraday Soc. , 1946 , 42 , 77 – 82 .
Khiêm, V. N. ; Itskov, M . Analytical network-averaging of the tube model: rubber elasticity . J. Mech. Phys. Solids , 2016 , 95 , 254 – 269 .
Daniels, H. E . The statistical theory of stiff chains . Proc. Royal Soc. Edinb. Sect. A: Mathem. , 1952 , 63 , 290 – 311 .
Morovati, V. ; Dargazany, R . Improved approximations of non-Gaussian probability, force, and energy of a single polymer chain . Phys. Rev. E , 2019 , 99 ( 5-1 ), 052502 .
Wang, M. C. ; Guth, E . Statistical theory of networks of non-Gaussian flexible chains . J. Chem. Phys. , 1952 , 20 ( 7 ), 1144 – 1157 .
Mao, Y . Finite chain-length effects in rubber elasticity . Polymer , 1999 , 40 ( 5 ), 1167 – 1171 .
Guo, Q. ; Zaïri, F . A micromechanics-based model for deformation-induced damage and failure in elastomeric media . Int. J. Plast. , 2021 , 140 , 102976 .
Kuhn, W. ; Grün, F . Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe . Kolloid-Zeitschrift , 1942 , 101 ( 3 ), 248 – 271 .
Wolkenstein, M. W. ; Ptizyn, O. B. ; Vogel, H . Statistische physik der linearen polymeren ketten . Fortschr. Phys. , 1953 , 1 ( 11 ), 597 – 657 .
Arruda, E. M. ; Boyce, M. C . A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials . J. Mech. Phys. Solids , 1993 , 41 ( 2 ), 389 – 412 .
Jernigan, R. L. ; Flory, P. J . Distribution functions for chain molecules . J. Chem. Phys. , 1969 , 50 ( 10 ), 4185 – 4200 .
Jernigan, R. L. ; Flory, P. J . Configurational distributions for finite chain molecules . J. Polym. Sci., C: Polym. Symp. , 1968 , 25 ( 1 ), 69 – 72 .
Cohen, A . A padé approximant to the inverse Langevin function . Rheol. Acta , 1991 , 30 ( 3 ), 270 – 273 .
Jarecki, L. ; Ziabicki, A . Development of molecular orientation and stress in biaxially deformed polymers. I. Affine deformation in a solid state . Polymer , 2002 , 43 ( 8 ), 2549 – 2559 .
Bienzobaz, P. F. ; Malacarne, L. C. ; Mendes, R. S. ; Lenzi, E. K . An expansion approach in rubber elasticity . Polymer , 2008 , 49 ( 7 ), 1968 – 1971 .
Glatting, G. ; Winkler, R. G. ; Reineker, P . Are the continuum and the lattice representation of freely jointed chains equivalent ? Macromol. Theory Simul. , 1994 , 3 ( 3 ), 575 – 583 .
Slater, G. W. ; Hubert, S. J. ; Nixon, G. I . Construction of approximate entropic forces for finitely extensible nonlinear elastic (FENE) polymers . Macromol. Theory Simul. , 1994 , 3 ( 4 ), 695 – 704 .
Warner, H. R. Jr . Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells . Ind. Eng. Chem. Fund. , 1972 , 11 ( 3 ), 379 – 387 .
Darabi, E. ; Hillgärtner, M. ; Itskov, M . An amended approximation of the non-Gaussian probability distribution function . Math. Mech. Solids , 2023 , 28 ( 2 ), 521 – 532 .
Malacarne, L. C. ; Mendes, R. S. ; Lenzi, E. K. ; Picoli jr, S. ; Dal Molin, J. P . A non-Gaussian model in polymeric network . Eur. Phys. J. E , 2006 , 20 ( 4 ), 395 – 399 .
Windwer, S . Monte Carlo generation of a restricted random walk and the excluded‐volume problem . J. Chem. Phys. , 1965 , 43 ( 1 ), 115 – 118 .
Kumbar, M . Excluded volume in macromolecules . J. Macromol. Sci. Part A: Chem. , 1971 , 5 ( 8 ), 1303 – 1310 .
Domb, C. ; Barrett, A. J. ; Lax, M . Self-avoiding walks and real polymer chains . J. Phys. A: Math. Nucl. Gen. , 1973 , 6 ( 7 ), L82 – L87 .
Kurata, M. ; Stockmayer, W. H. ; Roig, A . Excluded volume effect of linear polymer molecules . J. Chem. Phys. , 1960 , 33 ( 1 ), 151 – 155 .
James, H. M . The volume exclusion effect in flexible chains . J. Chem. Phys. , 1953 , 21 ( 10 ), 1628 – 1636 .
Hermans, J. J. ; Klamkin, M. S. ; Ullman, R . The excluded volume of polymer chains . J. Chem. Phys. , 1952 , 20 ( 9 ), 1360 – 1368 .
Mazur, J . Distribution function of the end-to-end distances of linear polymers with excluded volume effects J. Res. Nat. Rureau Stand. A.: Phys. Chem. , 1965 , 69 , 355 – 363 .
Mazur, J . On the limiting shape of the distribution function of lengths of a single polymer molecule with excluded‐volume effects . J. Chem. Phys. , 1965 , 43 ( 12 ), 4354 – 4356 .
Treloar, L. R. G . Stress-strain data for vulcanised rubber under various types of deformation . Trans. Faraday Soc. , 1944 , 40 , 59 – 70 .
Li, Z. Y. ; Xu, H. L. ; Xia, X. X. ; Song, Y. H. ; Zheng, Q . Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites . Polymer , 2019 , 171 , 106 – 114 .
Fixman, M. ; Alben, R . Polymer conformational statistics. I. Probability distribution . J. Chem. Phys. , 1973 , 58 ( 4 ), 1553 – 1558 .
Erman, B. ; Mark, J. E . Use of the Fixman-Alben distribution function in the analysis of non-Gaussian rubber‐like elasticity . J. Chem. Phys. , 1988 , 89 ( 5 ), 3314 – 3316 .
Gray, H. B. ; Bloomfield, V. A. ; Hearst, J. E . Sedimentation coefficients of linear and cyclic wormlike coils with excluded‐volume effects . J. Chem. Phys. , 1967 , 46 ( 4 ), 1493 – 1498 .
Reiss, H . Variation principle treatment of the excluded‐volume problem . J. Chem. Phys. , 1967 , 47 ( 1 ), 186 – 194 .
Yamakawa, H . Asymptotic solution of the excluded‐volume problem in a linear polymer chain . J. Chem. Phys. , 1968 , 48 ( 9 ), 3845 – 3849 .
Kumbar, M . Distribution function for excluded‐volume problem . J. Chem. Phys. , 1970 , 53 ( 3 ), 1038 – 1039 .
Shen, M. ; Hall, W. F. ; Dewames, R. E . Molecular theories of rubber-like elasticity and polymer viscoelasticity . J. Macrom. Sci., Part C: Rev. Macromol. Chem. , 1968 , 2 ( 2 ), 183 – 224 .
Alexandrowicz, Z . Analytical treatment of excluded volume. I. Dimensions of real polymer chains . J. Chem. Phys. , 1967 , 46 ( 10 ), 3789 – 3799 .
Alexandrowicz, Z . Analytical treatment of excluded volume. III. Alternative calculations of the contacts density in chains . J. Chem. Phys. , 1968 , 49 ( 4 ), 1599 – 1602 .
Edwards, S. F . The statistical mechanics of polymers with excluded volume . Proc. Phys. Soc. , 1965 , 85 ( 4 ), 613 – 624 .
Kumbar, M . Non-Gaussian theory of rubber elasticity . J. Chem. Phys. , 1973 , 59 ( 4 ), 1672 – 1679 .
Kumbar, M . Comparative study of distribution functions for the excluded volume problem . J. Macromol. Sci. Part A: Chem. , 1973 , 7 ( 2 ), 461 – 474 .
Sharp, P. A. ; Bloomfield, V. A . Light scattering and hydrodynamic properties of polymer chains with excluded volume effects . J. Chem. Phys. , 1968 , 49 ( 10 ), 4564 – 4566 .
Fisher, M. E . Shape of a self-avoiding walk or polymer chain . J. Chem. Phys. , 1966 , 44 ( 2 ), 616 – 622 .
Domb, C. ; Gillis, J. ; Wilmers, G . On the shape and configuration of polymer molecules . Proc. Phys. Soc. , 1965 , 85 ( 4 ), 625 – 645 .
Mazur, J. ; McCrackin, F. L . Monte Carlo studies of configurational and thermodynamic properties of self-interacting linear polymer chains . J. Chem. Phys. , 1968 , 49 ( 2 ), 648 – 665 .
Wall, F. T. ; Mandel, F . Theory of rubberlike elasticity . J. Chem. Phys. , 1976 , 64 ( 5 ), 1998 – 2001 .
Wall, F. T. ; White, R. A . A distribution function for polymer lengths . Macromolecules , 1974 , 7 ( 6 ), 849 – 852 .
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构