浏览全部资源
扫码关注微信
浙江理工大学材料科学与工程学院先进陶瓷材料与纤维研究所,杭州 310018
chen@zstu.edu.cn
收稿日期:2025-01-11,
录用日期:2025-03-12,
网络出版日期:2025-05-28,
纸质出版日期:2025-07-20
移动端阅览
陆俊冲, 陈建军, 张梦娜, 李晓鸿, 孙鑫. 含铪碳化硅陶瓷纤维的制备及性能研究. 高分子通报, 2025, 38(7), 1106–1116.
Lu, J. C.; Chen, J. J.; Zhang, M. N.; Li, X. H.; Sun, X. Study on the preparation and properties of hafnium-containing silicon carbide ceramic fibers. Polym. Bull. (in Chinese), 2025, 38(7), 1106–1116.
陆俊冲, 陈建军, 张梦娜, 李晓鸿, 孙鑫. 含铪碳化硅陶瓷纤维的制备及性能研究. 高分子通报, 2025, 38(7), 1106–1116. DOI: 10.14028/j.cnki.1003-3726.2025.25.018.
Lu, J. C.; Chen, J. J.; Zhang, M. N.; Li, X. H.; Sun, X. Study on the preparation and properties of hafnium-containing silicon carbide ceramic fibers. Polym. Bull. (in Chinese), 2025, 38(7), 1106–1116. DOI: 10.14028/j.cnki.1003-3726.2025.25.018.
碳化硅纤维因其具备卓越的高温抗氧化性、高强度、良好热稳定性在航空航天以及核领域展现出广阔的应用潜力。近年来,通过在先驱体中引入难熔金属异质元素以提升碳化硅纤维耐高温性能的研究备受关注。本研究采用液态聚碳硅烷(LPCS)与乙酰丙酮铪(Hf(AcAc)
4
)在常压高温条件下进行裂解重排,合成了含铪聚碳硅烷(PHCS)先驱体。随后,通过熔融纺丝、空气不熔化、高温裂解及高温烧结工艺,成功制备出含铪SiC陶瓷纤维。实验结果显示,Hf(AcAc)
4
在反应中充当交联助剂,形成的Si―O―Hf键提升了先驱体的交联程度,制备的PHCS陶瓷产率达77.42%,显著高于PCS (61.4%)。通过空气不熔化方式实现纤维交联,在1200 ℃高温裂解过程中成功获得Si―C―
O―Hf纤维,该纤维具有光滑的表面和无缺陷的结构,平均直径为15.8 μm,平均抗拉强度1.85 GPa。对含铪碳化硅纤维的高温性能研究表明,其在1400和1600 ℃处理后强度保留率分别为81%和68%,表现出优异的耐高温性能,强度保留率高于Si―C―O纤维。1900 ℃高温热处理的Si―C―O―Hf纤维中的Hf以Hf―O键和Hf―C键的形式存在,SiC结晶程度更高,SiC晶粒尺寸增大,纤维直径变小,结构逐渐致密。本研究对于提升碳化硅陶瓷纤维的高温抗氧化性能具有一定的参考价值。
Silicon carbide fibers have demonstrated extensive application potential in the aerospace and nuclear fields due to their remarkable high-temperature oxidation resistance
high strength
and favorable thermal stability. In recent years
research focused on introducing refractory metal heteroelements into precursors to enhance the high-temperature resistance performance of silicon carbide fibers has attracted significant attention. In this study
liquid polycarbosilane (LPCS) and hafnium acetylacetonate (Hf(AcAc)
4
) were subjected to pyrolysis and rearrangement under normal pressure and elevated temperature conditions
leading to the synthesis of hafnium-containing polycarbosilane (PHCS) precursor. Subsequently
through the processes of melt spinning
air curing
pyrolysis
and high-temperature sintering
hafnium-containing SiC ceramic fibers were successfully fabricated. The experimental results indicate that Hf(AcAc)
4
functions as a cross-linking assistant in the reaction. The formed Si―O―Hf bonds augment the cross-linking degree of the precursor
and the ceramic yield of the prepared PHCS reaches 77.42%
which is notably higher than that of PCS (61.4%). Fiber cross-linking was achieved via air curing
and Si―C―O―Hf fibers were successfully obtained during the pyrolysis process at 1200 ℃. These fibers possess a smooth surface and a defect-free structure
with an average diameter of 15.8 μm and an average tensile strength of 1.85 GPa. Research on the high-temperature performance of hafnium-containing silicon carbide fibers reveals that after treatment at 1400 and 1600 ℃
the strength retention rates are 81% and 68%
respectively
exhibiting excellent high-temperature resistance per
formance and higher strength retention rates compared to Si―C―O fibers. In the Si―C―O―Hf fibers subjected to high-temperature heat treatment at 1900 ℃
Hf exists in the forms of Hf―O bonds and Hf―C bonds. The degree of SiC crystallization is enhanced
the grain size of SiC increases
the fiber diameter decreases
and the structure gradually becomes denser. This research holds certain reference value for improving the high-temperature oxidation resistance performance of silicon carbide ceramic fibers.
Gupta, R. K. ; Mishra, R. ; Kumar, S. ; Ranjan, A. ; Manocha, L. ; Prasad, N. E . Development of polycarbosilane (PCS) polymer and PCS-Derived SiC fibers and their composites . In: Handbook of Advanced Ceramics and Composites . Springer , 2020 . 913 – 928 .
Ichikawa, H . Advances in SiC fibers for high temperature applications . Adv. Sci.Technol. , 2006 , 17 – 23 .
Snead, L. L. ; Nozawa, T. ; Katoh, Y. ; Byun, T. S. ; Kondo, S. ; Petti, D. A . Handbook of SiC properties for fuel performance modeling . J. Nucl. Mater. , 2007 , 371 ( 1-3 ), 329 – 377 .
罗瀚 , 陈博文 , 黄鹤飞 , 王苍龙 , 姜志忠 , 周海山 , 陈向阳 , 王晓敏 , 张瑞谦 , 董绍明 . 连续碳化硅纤维增强碳化硅陶瓷基复合材料在先进核能领域的发展研究 . 中国工程科学 , 2024 , 26 , 53 – 62 .
朱丹 , 李玉凤 , 高明霞 , 潘颐 . SiC f /SiC陶瓷基复合材料制备技术与性能研究进展 . 材料导报 , 2008 , 22 ( 3 ), 55 – 59 .
江东亮 . 碳化硅基复合材料 . 无机材料学报 , 1995 , 10 , 13 .
Zhao, D. F. ; Wang, H. Z. ; Li, X. D . Development of polymer-derived SiC fiber . J. Inorg. Mater. , 2009 , 24 ( 6 ), 1097 – 1104 .
Padture, N. P . Advanced structural ceramics in aerospace propulsion . Nat. Mater. , 2016 , 15 ( 8 ), 804 – 809 .
Ren, Z. K. ; Mujib, S. B. ; Singh, G . High-temperature properties and applications of Si-based polymer-derived ceramics: a review . Materials , 2021 , 14 ( 3 ), 614 .
Hasegawa, Y. ; Okamura, K . Synthesis of continuous silicon carbide fibre . J. Mater. Sci. , 1983 , 18 ( 12 ), 3633 – 3648 .
Okamura, K . Ceramic fibres from polymer precursors . Composites , 1987 , 18 ( 2 ), 107 – 120 .
王阳阳 , 徐敏 , 贾晨 , 贾磊 . SiC陶瓷纤维材料的研究进展, 高科技纤维与应用 , 2023 , 48 , 69 – 73 .
Ya jima S. ; Okamura, K. ; Hayashi, J . Continuous silicon carbide fiber of high tensile strength . Chem. Lett. , 1975 , 9 , 1209 – 1212 .
Mah, T. ; Hecht, N. L. ; McCullum, D. E. ; Hoenigman, J. R. ; Kim, H. M. ; Katz, A. P. ; Lipsitt, H. A . Thermal stability of SiC fibres (nicalon®) . J. Mater. Sci. , 1984 , 19 ( 4 ), 1191 – 1201 .
Vahlas, C. ; Rocabois, P. ; Bernard, C . Thermal degradation mechanisms of nicalon fibre: a thermo-dynamic simulation . J. Mater. Sci. , 1994 , 29 ( 22 ), 5839 – 5846 .
Sha, J. J. ; Hinoki, T. ; Kohyama, A . Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures . J. Mater. Sci. , 2007 , 42 ( 13 ), 5046 – 5056 .
Yamamura, T. ; Ishikawa, T. ; Shibuya, M. ; Hisayuki, T. ; Okamura, K . Development of a new continuous Si―Ti―C―O fibre using an organometallic polymer precursor . J. Mater. Sci. , 1988 , 23 ( 7 ), 2589 – 2594 .
Hasegawa, Y. ; Feng, C. X. ; Song, Y. C. ; Tan, Z. L . Ceramic fibres from polymer precursor containing Si―O―Ti bonds . J. Mater. Sci. , 1991 , 26 ( 13 ), 3657 – 3664 .
Lipowitz, J. ; Barnard, T. ; Bujalski, D. ; Rabe, J. ; Zank, G. ; Zangvil, A. ; Xu, Y . Fine-diameter polycrystalline SiC fibers . Compos. Sci. Technol. , 1994 , 51 ( 2 ), 167 – 171 .
Ishikawa, T. ; Kohtoku, Y. ; Kumagawa, K . Production mechanism of polyzirconocarbosilane using zirconium(Ⅳ) acetylacetonate and its conversion of the polymer into inorganic materials . J. Mater. Sci. , 1998 , 33 ( 1 ), 161 – 166 .
Ichikawa, H . Polymer-derived ceramic fibers . Annu. Rev. Mater. Res. , 2016 , 46 , 335 – 356 .
Cao, S. Y. ; Wang, J. ; Wang, H . Effect of heat treatment on the microstructure and tensile strength of KD-Ⅱ SiC fibers . Mater. Sci. Eng. A , 2016 , 673 , 55 – 62 .
Chai, Y. X. ; Zhou, X. G. ; Zhang, H. Y . Effect of oxidation treatment on KD-Ⅱ SiC fiber-reinforced SiC composites . Ceram. Int. , 2017 , 43 ( 13 ), 9934 – 9940 .
曹淑伟 . 含锆、钽、铪SiC陶瓷先驱体的合成及纤维制备研究 . 硕士学位论文 , 长沙 : 国防科学技术大学 , 2007 .
牛加新 , 谢征芳 , 薛金根 , 王浩 , 宋永才 . 聚钽碳硅烷陶瓷先驱体的制备与表征, 有机硅材料 , 2008 , 22 , 203 – 207 .
牛加新 , 谢征芳 , 薛金根 , 王浩 . SiC(Nb)陶瓷纤维先驱体聚铌碳硅烷的合成与表征 . 硅酸盐学报 , 2009 , 37 ( 2 ), 171 – 175 .
牛加新 . Si―C―M(Nb, Mo, Re)陶瓷先驱体的合成与陶瓷纤维制备研究 . 硕士学位论文 , 长沙 : 国防科学技术大学 , 2008 .
Kayser, C. ; Marschner, C . Oligosilylanions and their reactions with zirconocene and hafnocene dichlorides . Monatsh. Chem. , 1999 , 130 , 203 – 206 .
Amorós, P. ; Beltrán, D. ; Guillem, C. ; Latorre, J . Synthesis and characterization of SiC/MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidic precursors . Chem. Mater. , 2002 , 14 ( 4 ), 1585 – 1590 .
张丽艳 . HfC及HfC/SiC陶瓷先驱体的制备与理化性能研究 . 硕士学位论文 , 长沙 : 国防科技大学 , 2017 .
Kim, M. S. ; Ko, Y. D. ; Moon, T. H. ; Myoung, J. M. ; Yun, I . Modeling growth rate of HfO 2 thin films grown by metal-organic molecular beam epitaxy . Microelectron. J. , 2006 , 37 ( 2 ), 98 – 106 .
Ichikawa, H . Development of high performance SiC fibers derived from polycarbosilane using electron beam irradiation curing: a review . J. Ceram. Soc. Japan , 2006 , 114 ( 1330 ), 455 – 460 .
Suwardie, H. ; Kalyon, D. M. ; Kovenklioglu, S . Thermal behavior and curing kinetics of poly(carbosilane) . J. Appl. Polym. Sci. , 1991 , 42 ( 4 ), 1087 – 1095 .
Sha, J. J. ; Nozawa, T. ; Park, J. S. ; Katoh, Y. ; Kohyama, A . Effect of heat treatment on the tensile strength and creep resistance of advanced SiC fibers . J. Nucl. Mater. , 2004 , 329 , 592 – 596 .
Takeda, M. ; Sakamoto, J. I. ; Imai, Y. ; Ichikawa, H . Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM . Compos. Sci. Technol. , 1999 , 59 ( 6 ), 813 – 819 .
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构