浏览全部资源
扫码关注微信
1.中南大学,粉末冶金全国重点实验室,长沙 410083
2.江苏沃峰新材料有限公司,扬州 225800
3.扬州腾飞电缆电器材料有限公司,扬州 225800
4.厦门大学,高性能陶瓷纤维教育部重点实验室,厦门 361005
wentsingbo@csu.edu.cn
zhaojuyu@xmu.edu.cn
收稿日期:2025-02-11,
录用日期:2025-04-03,
网络出版日期:2025-06-11,
纸质出版日期:2025-07-20
移动端阅览
费涵, 王中奇, 江涛, 邹红飞, 文青波, 余兆菊, 熊翔. 聚合物先驱体陶瓷在先进储能领域的应用研究进展. 高分子通报, 2025, 38(7), 1013–1032.
Fei, H.; Wang, Z. Q.; Jiang, T.; Zou, H. F.; Wen, Q. B.; Yu, Z. J.; Xiong, X. Progress of polymer-derived ceramics for advanced energy storage. Polym. Bull. (in Chinese), 2025, 38(7), 1013–1032.
费涵, 王中奇, 江涛, 邹红飞, 文青波, 余兆菊, 熊翔. 聚合物先驱体陶瓷在先进储能领域的应用研究进展. 高分子通报, 2025, 38(7), 1013–1032. DOI: 10.14028/j.cnki.1003-3726.2025.25.045.
Fei, H.; Wang, Z. Q.; Jiang, T.; Zou, H. F.; Wen, Q. B.; Yu, Z. J.; Xiong, X. Progress of polymer-derived ceramics for advanced energy storage. Polym. Bull. (in Chinese), 2025, 38(7), 1013–1032. DOI: 10.14028/j.cnki.1003-3726.2025.25.045.
大规模应用可再生能源是实现“双碳”目标的必要条件,合理存储与分配这些能源是构建高效能源体系的关键。聚合物先驱体陶瓷(polymer-derived ceramics
PDCs)因具有独特的合成路径和微观结构、成分结构可调性强、热稳定性和化学稳定性好等特点,在二次电池和超级电容器等先进储能领域具有广泛的应用前景。本文总结了聚合物先驱体陶瓷在先进储能领域的应用现状,从聚合物先驱体陶瓷的发展历史、制备方法、微观结构以及结构-性能关联等出发,综述了其在锂离子电池、钠/钾离子电池、镁离子电池、锂-硫/硒电池、锌-空气电池和超级电容器等方面国内外的研究进展,并对其发展趋势进行了展望。
The large-scale application of renewable energy is a necessary condition for realizing the goal of “dual-carbon”
and the rational storage and distribution of these energies is the key to building an efficient energy system. Polymer-derived ceramics (PDCs) have good application prospects in the field of advanced energy storage
such as secondary batteries and supercapacitors
owing to their unique synthesis paths and microstructures
strong compositional structure modulation
and good thermal and chemical stability. This review summarizes the current status of the application of polymer-derived ceramics in the field of advanced energy storage and reviews the domestic and international research progress on polymer-derived ceramics in lithium-ion batteries
sodium/potassium-ion batteries
magnesium-ion batteries
lithium-sulfur/selenium batteries
zinc-air batteries
and supercapacitors based on the development history of polymer-derived ceramics
their preparation methods
microstructures
structure-property correlations
and development trends.
姜明明 , 金之钧 . 专利视角下中国储能技术研究现状分析 . 中国科学院院刊 , 2024 , 39 ( 8 ), 1468 – 1485 .
田孟羽 . 基于高比容量合金负极的锂离子电池相关科学问题研究 . 博士学位论文 , 北京 : 中国科学院大学(中国科学院物理研究所) , 2023 .
邹才能 , 李士祥 , 刘辰光 , 王俪颖 . 新质生产力赋能新型储能技术及其商业模式 . 石油学报 , 2024 , 45 ( 10 ), 1443 – 1461 .
Kita, K. ; Narisawa, M. ; Mabuchi, H. ; Itoh, M. ; Sugimoto, M. ; Yoshikawa, M . Formation of continuous pore structures in Si―C―O fibers by adjusting the melt spinning condition of a polycarbosilane-polysiloxane polymer blend . J. Am. Ceram. Soc. , 2009 , 92 ( 6 ), 1192 – 1197 .
Wen, T. H. ; Wen, Q. B. ; Lu, L. ; Wang, Y. L. ; Jiang, T. X. ; Hu, J. R. ; Zeng, Y. ; Xiong, X . Effects of polymer-derived ZiC interlayer on mechanical properties and ablation performance of C/C-ZiC-ZrC-SiC composites prepared by RMI . J. Eur. Ceram. Soc. , 2024 , 44 ( 10 ), 5623 – 5638 .
Eckel, Z. C. ; Zhou, C. Y. ; Martin, J. H. ; Jacobsen, A. J. ; Carter, W. B. ; Schaedler, T. A . Additive manufacturing of polymer-derived ceramics . Science , 2016 , 351 ( 6268 ), 58 – 62 .
Wang, X. F. ; Schmidt, F. ; Hanaor, D. ; Kamm, P. H. ; Li, S. ; Gurlo, A . Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry . Addit. Manuf. , 2019 , 27 , 80 – 90 .
Wen, Q. B. ; Yu, Z. J. ; Riedel, R . The fate and role of in situ formed carbon in polymer-derived ceramics . Prog. Mater. Sci. , 2020 , 109 , 100623 .
Sujith, R. ; Jothi, S. ; Zimmermann, A. ; Aldinger, F. ; Kumar, R . Mechanical behaviour of polymer derived ceramics–a review . Int. Mater. Rev. , 2021 , 66 ( 6 ), 426 – 449 .
Wen, Q. B. ; Qu, F. M. ; Yu, Z. J. ; Graczyk-Zajac, M. ; Xiong, X. ; Riedel, R . Si-based polymer-derived ceramics for energy conversion and storage . J. Adv. Ceram. , 2022 , 11 ( 2 ), 197 – 246 .
Colombo, P. ; Mera, G. ; Riedel, R. ; Sorarù, G. D . Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics . J. Am. Ceram. Soc. , 2010 , 93 ( 7 ), 1805 – 1837 .
Packirisamy, S. ; Sreejith, K. J. ; Devapal, D. ; Swaminathan, B . Polymer-derived ceramics and their space applications . Handbook of Advanced Ceramics and Composites . Cham : Springer International Publishing , 2020 . 975 – 1080 .
Ainger, F. , Herbert, J . The preparation of phosphorus-nitrogen compounds as non-porous solids . Angew Chem. Int. Ed , 1959 , 71 ( 20 ), 653 – 653 .
江天兴 , 周天赐 , 文青波 , 余兆菊 , 熊翔 . 聚合物转化超高温陶瓷及其复合材料研究进展 . 硅酸盐学报 , 2024 , 52 ( 9 ), 2827 – 2846 .
Fritz, G. ; Raabe, B . Bildung siliciumorganischer verbindungen. V. die thermische zersetzung von Si(CH 3 ) 4 und Si(C 2 H 5 ) 4 . Z. Für Anorg. Und Allg. Chem. , 1956 , 286 ( 3-4 ), 149 – 167 .
Verbeek, W . Production of shaped articles of homogeneous mixtures of silicon carbide and nitride . USA patent, US3853567 . 1974-12-10 .
Verbeek, W. , Winter, G . Formkoerper aus siliciumcarbid und verfahren zu ihrer herstellung . DE patent, 2236078: A1 . 1974 .
Winter, G. ; Verbeek, W. ; Mansmann, M . Production of shaped articles of silicon carbide and silicon nitride . USA patent, US3892583 . 1975-07-01 .
Yajima, S. ; Hayashi, J. ; Omori, M. ; Okamura, K . Development of a silicon carbide fibre with high tensile strength . Nature , 1976 , 261 ( 5562 ), 683 – 685 .
Yajima, S. ; Okamura, K. ; Hayashi, J. ; Omori, M . Synthesis of continuous SiC fibers with high tensile strength . J. Am. Ceram. Soc. , 1976 , 59 ( 7-8 ), 324 – 327 .
Yajima, S. ; Omori, M. ; Hayashi, J. ; Okamura, K. ; Matsuzawa, T. ; Liaw, C. F . Simple synthesis of the continuous SiC fiber with high tensile strength . Chem. Lett. , 1976 , 5 ( 6 ), 551 – 554 .
Bill, J. ; Aldinger, F . Precursor-derived covalent ceramics . Adv. Mater. , 1995 , 7 ( 9 ), 775 – 787 .
Ionescu, E . Polymer-derived ceramics . Ceram Sci Technol , 2013 : 457 – 500 .
Su, D. ; Li, Y. L. ; An, H. J. ; Liu, X. ; Hou, F. ; Li, J. Y. ; Fu, X . Pyrolytic transformation of liquid precursors to shaped bulk ceramics . J. Eur. Ceram. Soc. , 2010 , 30 ( 6 ), 1503 – 1511 .
Choong Kwet Yive, N. S. ; Corriu, R. J. P. ; Leclercq, D. ; Mutin, P. H. ; Vioux, A . Silicon carbonitride from polymeric precursors: Thermal cross-linking and pyrolysis of oligosilazane model compounds . Chem. Mater. , 1992 , 4 ( 1 ), 141 – 146 .
Kaur, S. ; Cherkashinin, G. ; Fasel, C. ; Kleebe, H. J. ; Ionescu, E. ; Riedel, R . Single-source-precursor synthesis of novel V 8 C 7 /SiC(O)-based ceramic nanocomposites . J. Eur. Ceram. Soc. , 2016 , 36 ( 15 ), 3553 – 3563 .
Kaur, S. ; Riedel, R. ; Ionescu, E . Pressureless fabrication of dense monolithic SiC ceramics from a polycarbosilane . J. Eur. Ceram. Soc. , 2014 , 34 ( 15 ), 3571 – 3578 .
Qazzazie-Hauser, A. ; Honnef, K. ; Hanemann, T . Crosslinking behavior of UV-cured polyorganosilazane as polymer-derived ceramic precursor in ambient and nitrogen atmosphere . Polymers , 2021 , 13 ( 15 ), 2424 .
Su, Z. M. ; Zhang, L. T. ; Li, Y. C. ; Li, S. W. ; Chen, L. F . Rapid preparation of SiC fibers using a curing route of electron irradiation in a low oxygen concentration atmosphere . J. Am. Ceram. Soc. , 2015 , 98 ( 7 ), 2014 – 2017 .
Friedel, T. ; Travitzky, N. ; Niebling, F. ; Scheffler, M. ; Greil, P . Fabrication of polymer derived ceramic parts by selective laser curing . J. Eur. Ceram. Soc. , 2005 , 25 ( 2-3 ), 193 – 197 .
Bahloul, D. ; Pereira, M. ; Goursat, P. ; Choong Kwet Yive, N. S. ; Corriu, R. J. P . Preparation of silicon carbonitrides from an organosilicon polymer: I, thermal decomposition of the cross-linked polysilazane . J. Am. Ceram. Soc. , 1993 , 76 ( 5 ), 1156 – 1162 .
Lee, S. H. ; Weinmann, M. ; Aldinger, F . Particulate-reinforced precursor-derived Si―C―N ceramics: Optimization of pyrolysis atmosphere and schedules . J. Am. Ceram. Soc. , 2005 , 88 ( 11 ), 3024 – 3031 .
Li, K. Z. ; Yuan, G. Q. ; Liu, X. F. ; Guo, Y. ; Huang, R. ; Li, H. ; Zhang, H. J. ; Jia, Q. L. ; Xie, Z. W. ; Zhang, S. W. ; Lei, W . On the practical applicability of rambutan-like SiOC anode with enhanced reaction kinetics for lithium-ion storage . Adv. Funct. Mater. , 2023 , 33 ( 43 ), 2302348 .
Saha, A. ; Raj, R. ; Williamson, D. L . A model for the nanodomains in polymer-derived SiCO . J. Am. Ceram. Soc. , 2006 , 89 ( 7 ), 2188 – 2195 .
Sun, H. ; Zhao, K. J . Atomistic origins of high capacity and high structural stability of polymer-derived SiOC anode materials . ACS Appl. Mater. Interfaces , 2017 , 9 ( 40 ), 35001 – 35009 .
曹东学 . 锂离子电池负极材料技术现状和发展趋势 . 炼油技术与工程 , 2024 , 54 ( 9 ), 1 – 7 .
吴泽 . 高容量锂离子电池硅氧碳基负极材料的制备及性能研究 . 博士学位论文 , 哈尔滨 : 哈尔滨工业大学 , 2019 .
Rohrer, J. ; Vrankovic, D. ; Cupid, D. ; Riedel, R. ; Seifert, H. J. ; Albe, K. ; Graczyk-Zajac, M . Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling . Int. J. Mater. Res. , 2017 , 108 ( 11 ), 920 – 932 .
Wilson, A. M. ; Reimers, J. N. ; Fuller, E. W. ; Dahn, J. R . Lithium insertion in pyrolyzed siloxane polymers . Solid State Ion. , 1994 , 74 ( 3-4 ), 249 – 254 .
Xing, W. B. ; Wilson, A. M. ; Eguchi, K. ; Zank, G. ; Dahn, J. R . Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries . J. Electrochem. Soc. , 1997 , 144 ( 7 ), 2410 – 2416 .
Sujith, R. ; Gangadhar, J. ; Greenough, M. ; Bordia, R. K. ; Panda, D. K . A review of silicon oxycarbide ceramics as next generation anode materials for lithium-ion batteries and other electrochemical applications . J. Mater. Chem. A , 2023 , 11 ( 38 ), 20324 – 20348 .
Sanchez-Jimenez, P. E. ; Raj, R . Lithium insertion in polymer-derived silicon oxycarbide ceramics . J. Am. Ceram. Soc. , 2010 , 93 ( 4 ), 1127 – 1135 .
Liu, X. ; Zheng, M. C. ; Xie, K . Mechanism of lithium storage in Si―O―C composite anodes . J. Power Sources , 2011 , 196 ( 24 ), 10667 – 10672 .
Radovanovic, E. ; Gozzi, M. F. ; Gonçalves, M. C. ; Yoshida, I. V. P . Silicon oxycarbide glasses from silicone networks . J. Non Cryst. Solids , 1999 , 248 ( 1 ), 37 – 48 .
Graczyk-Zajac, M. ; Vrankovic, D. ; Waleska, P. ; Hess, C. ; Sasikumar, P. V. ; Lauterbach, S. ; Kleebe, H. J. ; Sorarù, G. D . The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds . J. Mater. Chem. A , 2018 , 6 ( 1 ), 93 – 103 .
Fukui, H. ; Ohsuka, H. ; Hino, T. ; Kanamura, K . A Si―O―C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics . ACS Appl. Mater. Interfaces , 2010 , 2 ( 4 ), 998 – 1008 .
Lim, H. ; Kim, H. ; Kim, S. O. ; Kim, K. J. ; Choi, W . Novel approach for controlling free-carbon domain in silicone oil-derived silicon oxycarbide (SiOC) as an anode material in secondary batteries . Chem. Eng. J. , 2021 , 404 , 126581 .
Wilamowska, M. ; Pradeep, V. S. ; Graczyk-Zajac, M. ; Riedel, R. ; Sorarù, G. D . Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries . Solid State Ion. , 2014 , 260 , 94 – 100 .
Fukui, H. ; Ohsuka, H. ; Hino, T. ; Kanamura, K . Influence of polystyrene/phenyl substituents in precursors on microstructures of Si–O–C composite anodes for lithium-ion batteries . J. Power Sources , 2011 , 196 ( 1 ), 371 – 378 .
Li, K. Z. ; Yuan, G. Q. ; Liu, X. F. ; Xie, Q. ; Dong, L. ; Li, Z. Y. ; Zhang, H. J. ; Xie, Z. W. ; Zhang, S. W. ; Lei, W . Deciphering fast lithium storage kinetics via R-based self-derivation effects in siloxanes . Energy Storage Mater. , 2024 , 65 , 103194 .
Kroll, P . Tracing reversible and irreversible Li insertion in SiCO ceramics with modeling and ab-initio simulations . MRS Online Proc. Libr. , 2011 , 1313 ( 1 ), 7 .
Halim, M. ; Hudaya, C. ; Kim, A. Y. ; Lee, J. K . Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries . J. Mater. Chem. A , 2016 , 4 ( 7 ), 2651 – 2656 .
Lu, K . Porous and high surface area silicon oxycarbide-based materials: a review . Mater. Sci. Eng. R Rep. , 2015 , 97 , 23 – 49 .
Dibandjo, P. ; Graczyk-Zajac, M. ; Riedel, R. ; Pradeep, V. S. ; Soraru, G. D . Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics . J. Eur. Ceram. Soc. , 2012 , 32 ( 10 ), 2495 – 2503 .
Fukui, H. ; Harimoto, Y. ; Akasaka, M. ; Eguchi, K . Lithium species in electrochemically lithiated and delithiated silicon oxycarbides . ACS Appl. Mater. Interfaces , 2014 , 6 ( 15 ), 12827 – 12836 .
Ma, M. B. ; Wang, H. J. ; Niu, M. ; Su, L. ; Fan, X. Y. ; Deng, J. C. ; Zhang, Y. ; Du, X. F . High rate capabilities of HF-etched SiOC anode materials derived from polymer for lithium-ion batteries . RSC Adv. , 2016 , 6 ( 49 ), 43316 – 43321 .
Shi, H. M. ; Yuan, A. B. ; Xu, J. Q . Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries . J. Power Sources , 2017 , 364 , 288 – 298 .
Xia, K. D. ; Wu, Z. X. ; Xuan, C. J. ; Xiao, W. P. ; Wang, J. ; Wang, D. L . Effect of KOH etching on the structure and electrochemical performance of SiOC anodes for lithium-ion batteries . Electrochim. Acta , 2017 , 245 , 287 – 295 .
Dong, B. B. ; Han, Y. H. ; Wang, T. ; Lei, Z. W. ; Chen, Y. W. ; Wang, F. H. ; Abadikhah, H. ; Khan, S. A. ; Hao, L. Y. ; Xu, X. ; Cao, R. G. ; Yin, L. J. ; Agathopoulos, S . Hard SiOC microbeads as a high-performance lithium-ion battery anode . ACS Appl. Energy Mater. , 2020 , 3 ( 10 ), 10183 – 10191 .
Fukui, H. ; Eguchi, K. ; Ohsuka, H. ; Hino, T. ; Kanamura, K . Structures and lithium storage performance of Si–O–C composite materials depending on pyrolysis temperatures . J. Power Sources , 2013 , 243 , 152 – 158 .
Kaspar, J. ; Graczyk-Zajac, M. ; Riedel, R . Carbon-rich SiOC anodes for lithium-ion batteries: Part II. Role of thermal cross-linking . Solid State Ion. , 2012 , 225 , 527 – 531 .
Kaspar, J. ; Graczyk-Zajac, M. ; Riedel, R . Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties . J. Power Sources , 2013 , 244 , 450 – 455 .
Pradeep, V. S. ; Graczyk-Zajac, M. ; Riedel, R. ; Soraru, G. D . New insights in to the lithium storage mechanism in polymer derived SiOC anode materials . Electrochim. Acta , 2014 , 119 , 78 – 85 .
Ahn, D. ; Raj, R . Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium . J. Power Sources , 2011 , 196 ( 4 ), 2179 – 2186 .
Kaspar, J. ; Graczyk-Zajac, M. ; Choudhury, S. ; Riedel, R . Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics . Electrochim. Acta , 2016 , 216 , 196 – 202 .
Do, K. ; Park, C. ; Hwang, J. ; Kim, S. ; Jung, Y. ; Lee, S. H. ; Lim, H. D. ; Ahn, H . Covalent-assisted seeding of Si nanoparticles into a dual-matrix design toward advanced Si-based Li-ion batteries . J. Mater. Chem. A , 2024 , 12 ( 18 ), 11062 – 11074 .
Wang, J. ; Jin, S. W. ; He, Z. Q. ; Kong, D. B. ; Hu, H. ; Feng, X. ; Chen, D . Rational design of Cu 3 Si interphase for 3D micron-sized SiOC-based anode to enable long-term cycling of lithium-ion battery . Adv. Funct. Mater. , 2025 , 35 ( 3 ), 2413540 .
Shen, J. ; Ahn, D. ; Raj, R . C-rate performance of silicon oxycarbide anodes for Li+ batteries enhanced by carbon nanotubes . J. Power Sources , 2011 , 196 ( 5 ), 2875 – 2878 .
Ma, M. B. ; Wang, H. J. ; Xiong, L. L. ; Huang, S. ; Li, X. ; Du, X. F . Self-assembled homogeneous SiOC@C/graphene with three-dimensional lamellar structure enabling improved capacity and rate performances for lithium ion storage . Carbon , 2022 , 186 , 273 – 281 .
Sang, Z. Y. ; Yan, X. ; Wen, L. ; Su, D. ; Zhao, Z. H. ; Liu, Y. ; Ji, H. M. ; Liang, J. ; Dou, S. X . A graphene-modified flexible SiOC ceramic cloth for high-performance lithium storage . Energy Storage Mater. , 2020 , 25 , 876 – 884 .
David, L. ; Bhandavat, R. ; Barrera, U. ; Singh, G . Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries . Nat. Commun. , 2016 , 7 , 10998 .
Lin, X. J. ; Dong, Y. ; Liu, X. W. ; Chen, X. H. ; Li, A. ; Song, H. H . In-situ pre-lithiated onion-like SiOC/C anode materials based on metallasilsesquioxanes for Li-ion batteries . Chem. Eng. J. , 2022 , 428 , 132125 .
Dahn, J. R. ; Wilson, A. M. ; Xing, W. B. ; Zank, G. A . Electrodes for lithium ion batteries using polysilazanes ceramic with lithium . USA patent, US5631106 . 1997-05-20 .
Liebau-Kunzmann, V. ; Fasel, C. ; Kolb, R. ; Riedel, R . Lithium containing silazanes as precursors for SiCN: Li ceramics: a potential material for electrochemical applications . J. Eur. Ceram. Soc. , 2006 , 26 ( 16 ), 3897 – 3901 .
Kolb, R. ; Fasel, C. ; Liebau-Kunzmann, V. ; Riedel, R . SiCN/C-ceramic composite as anode material for lithium ion batteries . J. Eur. Ceram. Soc. , 2006 , 26 ( 16 ), 3903 – 3908 .
Graczyk-Zajac, M. ; Mera, G. ; Kaspar, J. ; Riedel, R . Electrochemical studies of carbon-rich polymer-derived SiCN ceramics as anode materials for lithium-ion batteries . J. Eur. Ceram. Soc. , 2010 , 30 ( 15 ), 3235 – 3243 .
Reinold, L. M. ; Graczyk-Zajac, M. ; Gao, Y. ; Mera, G. ; Riedel, R . Carbon-rich SiCN ceramics as high capacity/high stability anode material for lithium-ion batteries . J. Power Sources , 2013 , 236 , 224 – 229 .
Graczyk-Zajac, M. ; Wimmer, M. ; Xu, Y. P. ; Buntkowsky, G. ; Neumann, C. ; Riedel, R . Lithium intercalation into disordered carbon/SiCN composite. Part 2: Raman spectroscopy and 7 Li MAS NMR investigation of lithium storage sites . J. Solid State Electrochem. , 2017 , 21 ( 1 ), 47 – 55 .
Wilamowska, M. ; Graczyk-Zajac, M. ; Riedel, R . Composite materials based on polymer-derived SiCN ceramic and disordered hard carbons as anodes for lithium-ion batteries . J. Power Sources , 2013 , 244 , 80 – 86 .
Feng, Y. ; Dou, S. M. ; Wei, Y. Z. ; Zhang, Y. L. ; Song, X. Y. ; Li, X. F. ; Battaglia, V. S . Preparation and capacity-fading investigation of polymer-derived silicon carbonitride anode for lithium-ion battery . ACS Omega , 2017 , 2 ( 11 ), 8075 – 8085 .
Baek, S. H. ; Reinold, L. M. ; Graczyk-Zajac, M. ; Riedel, R. ; Hammerath, F. ; Büchner, B. ; Grafe, H. J . Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance . J. Power Sources , 2014 , 253 , 342 – 348 .
Su, D. ; Li, Y. L. ; Feng, Y. ; Jin, J . Electrochemical properties of polymer-derived SiCN materials as the anode in lithium ion batteries . J. Am. Ceram. Soc. , 2009 , 92 ( 12 ), 2962 – 2968 .
Kaspar, J. ; Mera, G. ; Nowak, A. P. ; Graczyk-Zajac, M. ; Riedel, R . Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics . Electrochim. Acta , 2010 , 56 ( 1 ), 174 – 182 .
Reinold, L. M. ; Yamada, Y. ; Graczyk-Zajac, M. ; Munakata, H. ; Kanamura, K. ; Riedel, R . The influence of the pyrolysis temperature on the electrochemical behavior of carbon-rich SiCN polymer-derived ceramics as anode materials in lithium-ion batteries . J. Power Sources , 2015 , 282 , 409 – 415 .
Reinold, L. M. ; Graczyk-Zajac, M. ; Fasel, C. ; Riedel, R . Prevention of solid electrolyte interphase damaging on silicon by using polymer derived SiCN ceramics . ECS Trans. , 2011 , 35 ( 34 ), 37 – 44 .
Feng, Y. ; Du, G. X. ; Zhao, X. J. ; Yang, E. C . Preparation and electrochemical performance of SiCN–CNTs composite anode material for lithium ion batteries . J. Appl. Electrochem. , 2011 , 41 ( 8 ), 999 – 1002 .
Zhang, J. W. ; Xu, C. H. ; Liu, Z. P. ; Wang, W. ; Xin, X. ; Shen, L. ; Zhou, X. B. ; Zhou, J. ; Huang, Q . Enhanced rate capability of polymer-derived SiCN anode material for electrochemical storage of lithium with 3-D carbon nanotube network dispersed in nanoscale . J. Nanosci. Nanotechnol. , 2015 , 15 ( 4 ), 3067 – 3075 .
Feng, Y. ; Feng, N. N. ; Wei, Y. Z. ; Bai, Y . Preparation and improved electrochemical performance of SiCN–graphene composite derived from poly (silylcarbondiimide) as Li-ion battery anode . J. Mater. Chem. A , 2014 , 2 ( 12 ), 4168 – 4177 .
Bhandavat, R. ; Singh, G . Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode . ACS Appl. Mater. Interfaces , 2012 , 4 ( 10 ), 5092 – 5097 .
Feng, N. N. ; Feng, Y. ; Wei, Y. Z. ; Zhou, X. P . Preparation and electrochemical performance of a porous polymer-derived silicon carbonitride anode by hydrofluoric acid etching for lithium ion batteries . RSC Adv. , 2014 , 4 ( 45 ), 23694 – 23702 .
Feng, Y. ; Wei, Y. Z. ; Jia, Z. ; Zhang, Y. L. ; Battaglia, V. ; Liu, G . Polymer-derived and sodium hydroxide-treated silicon carbonitride material as anodes for high electrochemical performance Li-ion batteries . ChemistrySelect , 2016 , 1 ( 2 ), 309 – 317 .
Idrees, M. ; Batool, S. ; Kong, J. ; Zhuang, Q. ; Liu, H. ; Shao, Q. ; Lu, N. ; Feng, Y. N. ; Wujcik, E. K. ; Gao, Q. ; Ding, T. ; Wei, R. B. ; Guo, Z. H . Polyborosilazane derived ceramics - Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries . Electrochim. Acta , 2019 , 296 , 925 – 937 .
Wang, S. H. ; Hu, X. D. ; Dai, Y. J . Preparation and electrochemical performance of polymer-derived SiBCN-graphene composite as anode material for lithium ion batteries . Ceram. Int. , 2017 , 43 ( 1 ), 1210 – 1216 .
Chen, Q. Q. ; Li, D. X. ; Yang, Z. H. ; Jia, D. C. ; Zhou, Y. ; Riedel, R . BCl 3 modified tris(dichloromethylsilylethyl)borane as a precursor for SiBCN ceramics applied in lithium-ion battery anodes . Ceram. Int. , 2021 , 47 ( 16 ), 22839 – 22853 .
Han, M. S. ; Mu, Y. B. ; Yuan, F. ; Liang, J. B. ; Jiang, T. ; Bai, X. D. ; Yu, J . Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage . J. Mater. Chem. A , 2020 , 8 ( 7 ), 3822 – 3833 .
Chen, Q. Q. ; Hu, J. L. ; Xia, Q. ; Zhang, L. Z . Complexation-assisted polymerization for the synthesis of functional silicon oxycarbonitride with well-dispersed ultrafine CoS as high-performance anode for lithium-ion batteries . J. Alloys Compd. , 2023 , 949 , 169824 .
赵欣悦 , 胡金龙 , 燕禾 , 段先健 , 吴春蕾 , 王跃林 , 张灵志 . 新型硅氧碳氮负极材料合成及可控化学预锂化 . 新能源进展 , 2024 , 12 ( 6 ), 664 – 670 .
Hirsh, H. S. ; Li, Y. X. ; Tan, D. H. S. ; Zhang, M. H. ; Zhao, E. Y. ; Meng, Y. S . Sodium-ion batteries paving the way for grid energy storage . Adv. Energy Mater. , 2020 , 10 ( 32 ), 2001274 .
Vaalma, C. ; Buchholz, D. ; Weil, M. ; Passerini, S . A cost and resource analysis of sodium-ion batteries . Nat. Rev. Mater. , 2018 , 3 , 18013 .
Syed Ali Riza , 旭日干 , 刘琦 , Muhammad Hassan , 杨强 , 穆道斌 , 李丽 , 吴锋 , 陈人杰 . 钠离子电池负极材料综述 . 新型炭材料(中英文) , 2024 , 39 ( 5 ), 743 – 769 .
Kaspar, J. ; Storch, M. ; Schitco, C. ; Riedel, R. ; Graczyk-Zajac, M . SiOC(N)/hard carbon composite anodes for Na-ion batteries: Influence of morphology on the electrochemical properties . J. Electrochem. Soc. , 2016 , 163 ( 2 ), A156 – A162 .
Chandra, C. ; Kim, J . Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries . Chem. Eng. J. , 2018 , 338 , 126 – 136 .
Chandra, C. ; Cahyadi, H. S. ; Alvin, S. ; Devina, W. ; Park, J. H. ; Chang, W. ; Chung, K. Y. ; Kwak, S. K. ; Kim, J . Revealing the sodium storage mechanism in high-temperature-synthesized silicon oxycarbides . Chem. Mater. , 2020 , 32 ( 1 ), 410 – 423 .
Chandra, C. ; Devina, W. ; Sarofil, A. D. M. ; Kim, J . Strategy to enhance the electrochemical performance of silicon oxycarbide as anodes in sodium-ion batteries . Chem. Eng. J. , 2022 , 438 , 135411 .
Putra, R. N. ; Halim, M. ; Ali, G. ; Shaikh, S. F. ; Al-Enizi, A. M. ; Fazal, T. ; Jan Iftikhar, F. ; Saqib, A. N. S . High-rate sodium insertion/extraction into silicon oxycarbide-reduced graphene oxide . New J. Chem. , 2020 , 44 ( 33 ), 14035 – 14040 .
Kim, D. ; Kim, H. ; Lim, H. ; Kim, K. J. ; Jung, H. G. ; Byun, D. ; Kim, C. ; Choi, W . A facile control in free-carbon domain with divinylbenzene for the high-rate-performing Sb/SiOC composite anode material in sodium-ion batteries . Int. J. Energy Res. , 2020 , 44 ( 14 ), 11473 – 11486 .
Lee, Y. ; Lee, K. Y. ; Choi, W . One-pot synthesis of antimony-embedded silicon oxycarbide materials for high-performance sodium-ion batteries . Adv. Funct. Mater. , 2017 , 27 ( 43 ), 1702607 .
Park, J. ; Kim, M. ; Choi, M. ; Ku, M. ; Kam, D. ; Kim, S. O. ; Choi, W . Sb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode material in sodium-ion batteries . J. Power Sources , 2023 , 568 , 232908 .
Lim, H. ; Yu, S. ; Chang, W. ; Chung, K. Y. ; Choi, W. ; Kim, S. O . Boosting the sodiation kinetics of Sn anode using a yolk-shell nanohybrid structure for high-rate and ultrastable sodium-ion batteries . Adv. Sci. , 2024 , 11 ( 48 ), 2408450 .
Dey, S. ; Manjunath, K. ; Zak, A. ; Singh, G . WS 2 nanotube-embedded SiOC fibermat electrodes for sodium-ion batteries . ACS Omega , 2023 , 8 ( 11 ), 10126 – 10138 .
Lim, H. ; Yu, S. ; Choi, W. ; Kim, S. O . Hierarchically designed nitrogen-doped MoS 2 /silicon oxycarbide nanoscale heterostructure as high-performance sodium-ion battery anode . ACS Nano , 2021 , 15 ( 4 ), 7409 – 7420 .
Lee, S. ; Seok, E. ; Kang, H. ; Park, D. ; Kim, M. ; Kam, D. ; Choi, M. ; Kim, H. S. ; Choi, W . Silicone oil-based selective SiOC coating onto hydrophobic rGO-MoS 2 composite materials to achieve ultra-stable composite anodes in sodium-ion batteries . J. Ind. Eng. Chem. , 2023 , 126 , 239 – 248 .
Zhang, W. C. ; Liu, Y. J. ; Guo, Z. P . Approaching high-performance potassium-ion batteries via advanced design strategies and engineering . Sci. Adv. , 2019 , 5 ( 5 ), eaav7412 .
Sang, Z. Y. ; Su, D. ; Wang, J. S. ; Liu, Y. ; Ji, H. M . Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs . Chem. Eng. J. , 2020 , 381 , 122677 .
Li, Z. T. ; Dong, Y. F. ; Feng, J. Z. ; Xu, T. ; Ren, H. ; Gao, C. ; Li, Y. R. ; Cheng, M. J. ; Wu, W. T. ; Wu, M. B . Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries . ACS Nano , 2019 , 13 ( 8 ), 9227 – 9236 .
Chandra, C. ; Devina, W. ; Cahyadi, H. S. ; Kwak, S. K. ; Kim, J . Understanding lithium, sodium, and potassium storage mechanisms in silicon oxycarbide . Chem. Eng. J. , 2022 , 428 , 131072 .
Melzi d’Eril, M. ; Joanna Graczyk-Zajac, M. ; Riedel, R . On the reversible sodium plating/stripping reaction in porous SiCN(O) ceramic: A feasibility study . Batter. Supercaps , 2023 , 6 ( 3 ), e202200491 .
谢清水 , 汪依依 , 夏丽 , 张一鸣 , 瞿佰华 , 王敬丰 , 周小元 , 彭栋梁 . 镁离子电池的工作原理与关键材料 . 金属功能材料 , 2024 , 31 ( 1 ), 1 – 27 .
Guo, W. Q. ; Icin, O. ; Vakifahmetoglu, C. ; Kober, D. ; Gurlo, A. ; Bekheet, M. F . Magnesium-ion battery anode from polymer-derived SiOC nanobeads . Adv. Funct. Mater. , 2023 , 33 ( 48 ), 2304933 .
Guo, W. Q. ; Wang, J. ; Gurlo, A. ; Bekheet, M. F . Tin-containing silicon oxycarbonitride ceramic nanocomposites as stable anode for magnesium ion batteries . Batter. Supercaps , 2024 , 7 ( 6 ), e202400032 .
Bruce, P. G. ; Freunberger, S. A. ; Hardwick, L. J. ; Tarascon, J. M . Li-O 2 and Li-S batteries with high energy storage . Nat. Mater. , 2011 , 11 ( 1 ), 19 – 29 .
王唯嘉 , 李丰源 , 张紫萱 , 杨东澍 , 黄英 . 锂硫电池正极材料的研究进展 . 材料开发与应用 , 2023 , 38 ( 3 ), 96 – 104 .
Qu, F. M. ; Graczyk-Zajac, M. ; Vrankovic, D. ; Chai, N. ; Yu, Z. J. ; Riedel, R . Effect of morphology of C-rich silicon carbonitride ceramic on electrochemical properties of sulfur cathode for Li-S battery . Electrochim. Acta , 2021 , 384 , 138265 .
Qu, F. M. ; Yu, Z. J. ; Krol, M. ; Chai, N. ; Riedel, R. ; Graczyk-Zajac, M . Electrochemical performance of carbon-rich silicon carbonitride ceramic as support for sulfur cathode in lithium sulfur battery . Nanomaterials , 2022 , 12 ( 8 ), 1283 .
Weinberger, M. ; Munding, J. ; Lindén, M. ; Wohlfahrt-Mehrens, M . Template-derived submicrometric carbon spheres for lithium-sulfur and sodium-ion battery electrodes . Energy Technol. , 2018 , 6 ( 9 ), 1797 – 1804 .
Sun, J. M. ; Du, Z. Z. ; Liu, Y. H. ; Ai, W. ; Wang, K. ; Wang, T. ; Du, H. F. ; Liu, L. ; Huang, W . State-of-the-art and future challenges in high energy lithium–selenium batteries . Adv. Mater. , 2021 , 33 ( 10 ), 2003845 .
李俊艺 . 碳基锂硒电池正极材料的合理构筑及其储能研究 . 硕士学位论文 , 成都 : 电子科技大学 , 2024 .
Fang, R. Y. ; Xia, Y. ; Liang, C. ; He, X. P. ; Huang, H. ; Gan, Y. P. ; Zhang, J. ; Tao, X. Y. ; Zhang, W. K . Supercritical CO 2 -assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries . J. Mater. Chem. A , 2018 , 6 ( 48 ), 24773 – 24782 .
Moni, P. ; Deschamps, A. ; Schumacher, D. ; Rezwan, K. ; Wilhelm, M . A new silicon oxycarbide based gas diffusion layer for zinc-air batteries . J. Colloid Interface Sci. , 2020 , 577 , 494 – 502 .
陈萌 , 胡宗辉 , 高瑛 , 柯卓 . 锂离子电池用隔膜研究进展 . 上海轻工业 , 2024 , ( 6 ), 103 – 105 .
Smith, S. A. ; Park, J. H. ; Williams, B. P. ; Joo, Y. L . Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithium-ion battery performance . J. Mater. Sci. , 2017 , 52 ( 7 ), 3657 – 3669 .
Smith, S. A. ; Williams, B. P. ; Joo, Y. L . Effect of polymer and ceramic morphology on the material and electrochemical properties of electrospun PAN/polymer derived ceramic composite nanofiber membranes for lithium ion battery separators . J. Membr. Sci. , 2017 , 526 , 315 – 322 .
何志权 . MXene基电极材料的制备及其电化学性能研究 . 博士学位论文 , 北京 : 北京科技大学 , 2023 .
Sun, H. Y. ; Pan, J. M. ; Yan, X. H. ; Shen, W. ; Zhong, W. Q. ; Cheng, X. N . Mn O 2 nanoneedles loaded on silicon oxycarbide-derived hierarchically porous carbon for supercapacitor electrodes with enhanced electrochemical performance . Ceram. Int. , 2019 , 45 ( 18 ), 24802 – 24810 .
Swain, I. P. ; Pati, S. ; Behera, S. K . A preceramic polymer derived nanoporous carbon hybrid for supercapacitors . Chem. Commun. , 2019 , 55 ( 59 ), 8631 – 8634 .
Duan, L. Q. ; Ma, Q. S. ; Mei, L. ; Chen, Z. H . Fabrication and electrochemical performance of nanoporous carbon derived from silicon oxycarbide . Microporous Mesoporous Mater. , 2015 , 202 , 97 – 105 .
Tolosa, A. ; Krüner, B. ; Jäckel, N. ; Aslan, M. ; Vakifahmetoglu, C. ; Presser, V . Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes . J. Power Sources , 2016 , 313 , 178 – 188 .
Yang, J. ; Wu, H. L. ; Zhu, M. ; Ren, W. J. ; Lin, Y. ; Chen, H. B. ; Pan, F . Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/ microporous carbon for supercapacitors . Nano Energy , 2017 , 33 , 453 – 461 .
Halim, M. ; Liu, G. C. ; Ardhi, R. E. A. ; Hudaya, C. ; Wijaya, O. ; Lee, S. H. ; Kim, A. Y. ; Lee, J. K . Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors . ACS Appl. Mater. Interfaces , 2017 , 9 ( 24 ), 20566 – 20576 .
Bin Mujib, S. ; Cuccato, R. ; Mukherjee, S. ; Franchin, G. ; Colombo, P. ; Singh, G . Electrospun SiOC ceramic fiber mats as freestanding electrodes for electrochemical energy storage applications . Ceram. Int. , 2020 , 46 ( 3 ), 3565 – 3573 .
Merida, J. ; Colomer, M. T. ; Rubio, F. ; Mazo, M. A . Highly porous carbon materials derived from silicon oxycarbides and effect of the pyrolysis temperature on their electrochemical response . Int. J. Mol. Sci. , 2023 , 24 ( 18 ), 13868 .
Moyano, J. J. ; Mosa, J. ; Aparicio, M. ; Pérez-Coll, D. ; Belmonte, M. ; Miranzo, P. ; Osendi, M. I . Strong and light cellular silicon carbonitride—Reduced graphene oxide material with enhanced electrical conductivity and capacitive response . Addit. Manuf. , 2019 , 30 , 100849 .
David, L. ; Shareef, K. M. ; Abass, M. A. ; Singh, G . Three-dimensional polymer-derived ceramic/graphene paper as a Li-ion battery and supercapacitor electrode . RSC Adv. , 2016 , 6 ( 59 ), 53894 – 53902 .
Okoroanyanwu, U. ; Bhardwaj, A. ; Einck, V. ; Ribbe, A. ; Hu, W. G. ; Rodriguez, J. M. ; Schmidt, W. R. ; Watkins, J. J . Rapid preparation and electrochemical energy storage applications of silicon carbide and silico n oxycarbide ceramic/carbon nanocomposites derived via flash photothermal pyrolysis of organosilicon preceramic polymers . Chem. Mater. , 2021 , 33 ( 2 ), 678 – 694 .
Wang, X. ; Zhang, M. G. ; Chang, P. ; Mei, H. ; Cheng, L. F. ; Zhang, L. T . Phase separation strategy achieves printable corrosion-resistant ternary SiOC supercapacitors with sustained capacitance increase . Chem. Eng. J. , 2023 , 465 , 142746 .
Kolathodi, M. S. ; David, L. ; Abass, M. A. ; Singh, G . Polysiloxane-functionalized graphene oxide paper: Pyrolysis and performance as a Li-ion battery and supercapacitor electrode . RSC Adv. , 2016 , 6 ( 78 ), 74323 – 74331 .
Abass, M. A. ; Syed, A. A. ; Gervais, C. ; Singh, G . Synthesis and electrochemical performance of a polymer-derived silicon oxycarbide/boron nitride nanotube composite . RSC Adv. , 2017 , 7 ( 35 ), 21576 – 21584 .
Mujib, S. B. ; Ribot, F. ; Gervais, C. ; Singh, G . Self-supporting carbon-rich SiOC ceramic electrodes for lithium-ion batteries and aqueous supercapacitors . RSC Adv. , 2021 , 11 ( 56 ), 35440 – 35454 .
Pazhamalai, P. ; Krishnamoorthy, K. ; Sahoo, S. ; Mariappan, V. K. ; Kim, S. J . Carbothermal conversion of siloxene sheets into silicon-oxy-carbide lamellae for high-performance supercapacitors . Chem. Eng. J. , 2020 , 387 , 123886 .
Zhang, E. H. ; Yang, M. Q. ; Zhou, Y. S. ; Ke, X. ; Tang, J. ; Guo, J. H. ; Li, Z. R . Silicon-oxy-carbide intercalated three-dimensional graphene hybrid membrane for all-solid-state supercapacitors . Appl. Surf. Sci. , 2024 , 646 , 158915 .
Xia, K. D. ; Cheng, Y. F. ; Zhang, H. ; Han, F. ; Duan, L. Y. ; Liu, X . Highly microporous nitrogen-doped carbon derived from silicon oxycarbide ceramics for supercapacitor application . J. Inorg. Organomet. Polym. Mater. , 2023 , 33 ( 7 ), 2023 – 2034 .
Reddy, I. N. ; Sreedhar, A. ; Reddy, C. V. ; Shim, J. ; Cho, M. ; Yoo, K. ; Kim, D. ; Gwag, J. S . High performance hierarchical SiCN nanowires for efficient photocatalytic-photoelectrocatalytic and supercapacitor applications . Appl. Catal. B Environ. , 2018 , 237 , 876 – 887 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构