浏览全部资源
扫码关注微信
1.中国科学院化学研究所,中国科学院极端环境高分子材料重点实验室,北京 100190
2.中国科学院大学化学科学学院,北京 100049
3.中国科学院化学研究所,高分子物理与化学实验室,北京分子科学国家研究中心,北京 100190
4.航天材料及工艺研究所,北京 100076
houdingyu@iccas.ac.cn
zongbo@iccas.ac.cn
收稿日期:2025-02-18,
录用日期:2025-03-29,
网络出版日期:2025-06-10,
纸质出版日期:2025-07-20
移动端阅览
李逸征, 侯丁钰, 田跃龙, 江剑, 徐彩虹, 张宗波. 理论计算用于聚合物前驱体转化陶瓷研究的进展. 高分子通报, 2025, 38(7), 1093–1105.
Li, Y. Z.; Hou, D. Y.; Tian, Y. L.; Jiang, J.; Xu, C. H.; Zhang, Z. B. Advances in theoretical calculations for polymer-derived ceramics research. Polym. Bull. (in Chinese), 2025, 38(7), 1093–1105.
李逸征, 侯丁钰, 田跃龙, 江剑, 徐彩虹, 张宗波. 理论计算用于聚合物前驱体转化陶瓷研究的进展. 高分子通报, 2025, 38(7), 1093–1105. DOI: 10.14028/j.cnki.1003-3726.2025.25.053.
Li, Y. Z.; Hou, D. Y.; Tian, Y. L.; Jiang, J.; Xu, C. H.; Zhang, Z. B. Advances in theoretical calculations for polymer-derived ceramics research. Polym. Bull. (in Chinese), 2025, 38(7), 1093–1105. DOI: 10.14028/j.cnki.1003-3726.2025.25.053.
聚合物前驱体转化法作为一类重要的陶瓷制备方法,已经受到广泛的关注,围绕聚合物前驱体转化过程、转化机理也开展了大量研究,但是因其复杂性及实验方法所限,目前对转化过程中前驱体的微观结构演变仍不清晰。近年来,有研究者将计算模拟手段应用到聚合物前驱体转化陶瓷的研究中,以帮助了解前驱体转化过程。按照计算原理,计算模拟方法可以分为量子化学计算和分子力场模拟两大类。本文将按照计算原理和具体任务类型,综述各类计算模拟方法在聚合物前驱体转化陶瓷研究方面的应用进展,并总结各计算模拟方法的特点,为研究者在实际研究中选择不同的计算模拟方法提供参考。
Polymer precursor derived ceramic routes
which represent a significant method in ceramic fabrication
have garnered considerable attention. Extensive investigations have been conducted to elucidate the precursor conversion process and its underlying mechanism. However
owing to the complexity of the process and the limitations of the experimental methods
a clear understanding of the microstructural evolution of the precursors during conversion remains elusive. Recent advances have led to the implementation of computational simulation techniques in the study of precursor-derived ceramics with the objective of facilitating a more nuanced understanding of the precursor conversion process. Based on the underlying computational principles
these methodologies can be broadly categorized into two primary categories: quantum chemical calculations and molecular force field simulations. This review will delineate the application and advancements of various computational simulation methods in polymer precursor derived ceramic research
categorized according to both computational principles and specific tasks. Furthermore
the characteristics of each method are summarized as a reference for researchers to select appropriate computational simulation techniques for their research.
郭香 , 潘振雪 , 张宗波 , 罗永明 , 李永明 , 徐彩虹 . 硅基聚合物前驱体转化陶瓷微观结构研究进展 . 化学通报 . 2022 , 85 , 14 – 24 .
Jiang, J. P. ; Yan, L. W. ; Xue, Y. J. ; Li, J. T. ; Zhang, C. S. ; Hu, X. X. ; Guo, A. R. ; Du, H. Y. ; Liu, J. C . Lightweight and thermally insulating polymer-derived SiBCN/SiCnw ceramic aerogel with enhanced electromagnetic wave absorbing performance . Chem. Eng. J. , 2024 , 482 , 148878 .
Du, W. S. ; Ma, Y. ; Zhao, T. F. ; Zhang, R. ; Tang, P. ; Li, S. H. ; Zhao, W. ; Wang, H. ; Bin, Y. Z . Preparation and properties of corrosion-resistant polysiloxane-based ceramic coatings . J. Mater. Sci. , 2024 , 59 ( 17 ), 7193 – 7206 .
Liu, J. G. ; Li, H. Y. ; Li, H. M. ; Song, W. Z. ; Xia, S. L. ; Wei, D. Q. ; Wang, J. J. ; Li, H . Deep-sea glass sponges-like hollow porous ceramic fiber aerogel: Fabrication, anti-shrinkage and thermal insulation . Ceram. Int. , 2024 , 50 ( 20 ), 37714 – 37725 .
Zhang, S. ; Long, X. ; Ji, X. Y. ; Shao, C. W . BCN ceramics with excellent electromagnetic wave-absorbing property derived from high-yield and soluble precursor polymers . Appl. Organomet. Chem. , 2020 , 34 ( 12 ), e5979 .
Wang, W. Y. ; Zhang, Y. L. ; Guo, X. ; Wang, L. M. ; Zhang, J. R. ; Yang, H. ; Dong, G. J. ; Zhang, Z. B. ; Xu, C. H . Rapid conversion of perhydropolysilazane into thin silica coating at low temperature . Chinese J. Polym. Sci. , 2023 , 41 ( 8 ), 1198 – 1205 .
Sasmal, H. S. ; Kumar Mahato, A. ; Majumder, P. ; Banerjee, R . Landscaping covalent organic framework nanomorphologies . J. Am. Chem. Soc. , 2022 , 144 ( 26 ), 11482 – 11498 .
Laine, R. M. ; Babonneau, F . Preceramic polymer routes to silicon carbide . Chem. Mater. , 1993 , 5 ( 3 ), 260 – 279 .
Wen, Q. B. ; Yu, Z. J. ; Riedel, R . The fate and role of in situ formed carbon in polymer-derived ceramics . Prog. Mater. Sci. , 2020 , 109 , 100623 .
Hohenberg, P. ; Kohn, W . Inhomogeneous electron gas . Phys. Rev. , 1964 , 136 ( 3B ), B864 – B871 .
Kohn, W. ; Sham, L. J . Self-consistent equations including exchange and correlation effects . Phys. Rev. , 1965 , 140 ( 4A ), A1133 – A1138 .
Sousa, S. F. ; Fernandes, P. A. ; Ramos, M. J . General performance of density functionals . J. Phys. Chem. A , 2007 , 111 ( 42 ), 10439 – 10452 .
Du, Y. A. ; Wang, B. ; Li, W. ; Song, Q. Z. ; Shao, C. W. ; Han, C. ; Wang, Y. D . Design and synthesis of a novel spinnable polyborazine precursor with high ceramic yield via one-pot copolymerization . J. Am. Ceram. Soc. , 2021 , 104 ( 11 ), 5509 – 5520 .
Shi, H. Z. ; Shen, C. ; Hu, J. D. ; Zhang, J. ; Xie, J . Theoretical study on a kind of cyclization mechanism of boron trichloride and hexamethyldisilazane to form the borazine ring for SiBCN ceramics precursor . Ceram. Int. , 2021 , 47 ( 5 ), 6068 – 6076 .
Tuckerman, M. E . Ab initio molecular dynamics: basic concepts, current trends and novel applications . J. Phys. Condens. Matter , 2002 , 14 ( 50 ), R1297 .
Gao, H. F. ; Wang, H. J. ; Niu, M. ; Su, L . Radiation damage behavior of amorphous SiOC polymer-derived ceramics: the role of in situ formed free carbon . J. Nucl. Mater. , 2021 , 545 , 152652 .
Gong, W. L. ; Ye, L. ; Song, R. H. ; Cui, H. F. ; Guo, Y. ; Xu, W. ; Sun, K. ; Zhang, P. X. ; Zhao, T . Polymer-derived W-doping (Zr, Hf, Nb, Ta)C high entropy ceramics: Preparation, Properties and DFT calculation . Ceram. Int. , 2024 , 50 ( 5 ), 8284 – 8293 .
Nam, H. G. ; Huh, T. H. ; Kim, M. ; Kim, J. ; Kwark, Y. J . Magnetic properties of amorphous silicon carbonitride-based magnetoceramics synthesized using phenyl-substituted polysilazane as a precursor . J. Alloys Compd. , 2022 , 905 , 164282 .
Kumar, A. ; Sharma, K. ; Dixit, A. R . A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: Understanding of modelling and MD simulation . Mol. Simul. , 2020 , 46 ( 2 ), 136 – 154 .
Tersoff, J . New empirical approach for the structure and energy of covalent systems . Phys. Rev. B , 1988 , 37 ( 12 ), 6991 – 7000 .
Liao, N. B. ; Ma, G. ; Zhang, M. ; Xue, W . Effects of SiC particles on mechanical properties of SiCN-based composite by atomistic simulation . Compos. Part B Eng. , 2012 , 43 ( 4 ), 1739 – 1742 .
Liao, N. B. ; Xue, W. ; Zhou, H. M. ; Zhang, M . Numerical investigation into the nanostructure and mechanical properties of amorphous SiBCN ceramics . RSC Adv. , 2013 , 3 ( 34 ), 14458 – 14465 .
Zhan, Y. ; Li, W. ; Jiang, T. S. ; Fasel, C. ; Ricohermoso, E. III. ; Bernauer, J. ; Yu, Z. J. ; Wu, Z. H. ; Müller-Plathe, F. ; Molina-Luna, L. ; Grottenmüller, R. ; Riedel, R . Boron-modified perhydropolysilazane towards facile synthesis of amorphous SiBN ceramic with excellent thermal stability . J. Adv. Ceram. , 2022 , 11 ( 7 ), 1104 – 1116 .
Keasler, S. J. ; Charan, S. M. ; Wick, C. D. ; Economou, I. G. ; Siepmann, J. I . Transferable potentials for phase equilibria-united atom description of five- and six-membered cyclic alkanes and ethers . J. Phys. Chem. B , 2012 , 116 ( 36 ), 11234 – 11246 .
Sun, H. ; Mumby, S. J. ; Maple, J. R. ; Hagler, A. T . An ab initio CFF93 all-atom force field for polycarbonates . J. Am. Chem. Soc. , 1994 , 116 ( 7 ), 2978 – 2987 .
Jorgensen, W. L. ; Tirado-Rives, J . The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin . J. Am. Chem. Soc. , 1988 , 110 ( 6 ), 1657 – 1666 .
van Duin, A. C. T. ; Dasgupta, S. ; Lorant, F. ; Goddard, W. A . ReaxFF: a reactive force field for hydrocarbons . J. Phys. Chem. A , 2001 , 105 ( 41 ), 9396 – 9409 .
Chenoweth, K. ; Cheung, S. ; van Duin, A. C. T. ; Goddard, W. A. ; Kober, E. M . Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field . J. Am. Chem. Soc. , 2005 , 127 ( 19 ), 7192 – 7202 .
Naserifar, S. ; Liu, L. C. ; Goddard, W. A. III. ; Tsotsis, T. T. ; Sahimi, M . Toward a process-based molecular model of SiC membranes. 1. development of a reactive force field . J. Phys. Chem. C , 2013 , 117 ( 7 ), 3308 – 3319 .
Naserifar, S. ; Goddard, W. A. III. ; Liu, L. C. ; Tsotsis, T. T. ; Sahimi, M . Toward a process-based molecular model of SiC membranes. 2. reactive dynamics simulation of the pyrolysis of polymer precursor to form amorphous SiC . J. Phys. Chem. C , 2013 , 117 ( 7 ), 3320 – 3329 .
Gao, H. F. ; Wang, H. J. ; Zhao, Z. H. ; Niu, M. ; Su, L. ; Wei, Y . Reactive dynamics simulation study on the pyrolysis of polymer precursors to generate amorphous silicon oxycarbide structures . J. Phys. Chem. C , 2018 , 122 ( 10 ), 5767 – 5773 .
Wang, J. J. ; Li, G. X. ; Zhang, Z. ; Huang, Q. F. ; Niu, B. ; Zhang, Y. Y. ; Long, D. H . Detailed insights of polydimethylsiloxane (PDMS) degradation mechanism via ReaxFF MD and experiments . Chem. Eng. J. , 2024 , 488 , 150728 .
Xiao, J. ; Fang, G. D. ; Jin, X. Y. ; Wang, B. ; Meng, S. H . A comprehensive study of pyrolysis characteristics of silicone-modified phenolic aerogel matrix Nanocomposites: Kinetic Analysis, ReaxFF MD Simulations, and ANN prediction . Chem. Eng. J. , 2023 , 472 , 145049 .
Hou, D. Y. ; Li, P. F. ; Wang, L. M. ; Zhang, J. R. ; Zhang, Z. B. ; Jiang, J . Room-temperature solution processed silicon nanocluster: Theory prediction and experiment achievement . Chem. Eng. Sci. , 2024 , 300 , 120610 .
陈楚童 , 陈艳杰 , 罗永明 , 张宗波 , 李永明 , 徐彩虹 . 硅基陶瓷前驱体快速裂解转化研究进展 . 有机硅材料 , 2024 , 38 , 60 – 68 .
Huang, Q. F. ; Li, G. X. ; Wang, J. J. ; Niu, B. ; Fang, F. ; Quan, D. L. ; Long, D. H. ; Zhang, Y. Y . Adaptive force field parameter optimization for expanding reaction simulations within wide-ranged temperature . J. Phys. Chem. A , 2024 , 128 ( 12 ), 2487 – 2497 .
Kaymak, M. C. ; Rahnamoun, A. ; O’Hearn, K. A. ; van Duin, A. C. T. ; Merz, K. M. ; Jr, Aktulga, H. M . JAX-ReaxFF: A gradient-based framework for fast optimization of reactive force fields . J. Chem. Theory Comput. , 2022 , 18 ( 9 ), 5181 – 5194 .
Behler, J . Perspective: Machine learning potentials for atomistic simulations . J. Chem. Phys. , 2016 , 145 ( 17 ), 170901 .
Kubo, A. ; Umeno, Y . Machine-learning-based atomistic model analysis on high-temperature compressive creep properties of amorphous silicon carbide . Materials , 2021 , 14 ( 7 ), 1597 .
Leimeroth, N. ; Rohrer, J. ; Albe, K . Structure–property relations of silicon oxycarbides studied using a machine learning interatomic potential . J. Am. Ceram. Soc. , 2024 , 107 ( 10 ), 6896 – 6910 .
Falgoust, M. ; Kroll, P . Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics . J. Am. Ceram. Soc. , 2024 , 107 ( 12 ), 7653 – 7664 .
Martin-Barrios, R. ; Navas-Conyedo, E. ; Zhang, X. Y. ; Chen, Y. W. ; Gulín-González, J . An overview about neural networks potentials in molecular dynamics simulation . Int. J. Quantum Chem. , 2024 , 124 ( 11 ), e27389 .
Qiu, H. K. ; Wang, J. Y. ; Qiu, X. P. ; Dai, X. M. ; Sun, Z. Y . Heat-resistant polymer discovery by utilizing interpretable graph neural network with small data . Macromolecules , 2024 , 57 ( 8 ), 3515 – 3528 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构