浏览全部资源
扫码关注微信
1.东南大学化学化工学院,南京 211189
2.东南大学无锡校区,无锡 214000
*张久洋,E-mail: jiuyang@seu.edu.cn
收稿日期:2024-08-23,
录用日期:2024-10-07,
网络出版日期:2024-11-08,
纸质出版日期:2025-02-20
移动端阅览
张航, 陈静, 张久洋. 高分子流变在液态金属柔性导体中的影响与研究进展. 高分子通报, 2025, 38(2), 194–205.
Zhang, H.; Chen, J.; Zhang, J. Y. The influence and research progress of polymer rheology in liquid metal flexible conductors. Polym. Bull. (in Chinese), 2025, 38(2), 194–205
张航, 陈静, 张久洋. 高分子流变在液态金属柔性导体中的影响与研究进展. 高分子通报, 2025, 38(2), 194–205. DOI: 10.14028/j.cnki.1003-3726.2024.24.241.
Zhang, H.; Chen, J.; Zhang, J. Y. The influence and research progress of polymer rheology in liquid metal flexible conductors. Polym. Bull. (in Chinese), 2025, 38(2), 194–205 DOI: 10.14028/j.cnki.1003-3726.2024.24.241.
自21世纪初以来,由于对可穿戴设备、软体机器人和智能织物的需求不断增加,柔性电子得到了快速发展。在这种情况下,镓基液态金属(LMs)因其优异的导电性、化学稳定性和生物相容性而在柔性电子领域受到广泛青睐。然而,室温下LMs作为液体难以控制形貌和形状,限制了它的直接利用。将LMs分散到高分子基体中形成液态金属高分子复合材料(LMPCs),则表现出独特的导热、导电、机械和制备性能。因此,这类新兴的软多功能复合材料在可穿戴设备、可拉伸电子产品、软机器人和超级电容器等现在技术中被广泛应用。为更有效地制备和发展这些独特的复合材料,有必要了解它们的流变行为。本文总结了近年来对LMPCs流变行为的研究进展,主要讨论了不同高分子基体的LMPCs的流变行为对其机械性能和导电性能的影响,并指出该领域所面临的机遇和挑战。
Since the beginning of the 21
st
century
flexible electronics have undergone rapid development due to the increasing demand for wearable devices
soft robots
and smart textiles. In this context
gallium-based liquid metals (LMs) have gained wide popularity in the field of flexible electronics due to their excellent conductivity
chemical stability
and biocompatibility. However
the extremely high surface tension and low viscosity of LMs result in poor adhesion to most substrates
limiting their direct use. The dispersion of LMs in polymer matrices to form liquid metal polymer composites (LMPCs) not only avoids the aforementioned problem but also exhibits unique thermal conductivity
electrical conductivity
and mechanical properties. Consequently
these emerging soft multifunctional composites are widely applied in current technologies such as wearable devices
stretchable electronic products
soft robots
and supercapacitors. To effectively prepare and develop these unique composites
it is necessary to understand their rheological behavior. This article presents a summary of recent research progress on the rheological behavior of LMPCs. The main focus is on the influence of the rheological behaviour of LMPCs with different polymer matrices on their mechanical and electrical conductivity properties. Additionally
this article identifies the opportunities and challenges currently facing this field.
Ottaviano, L. ; Filipponi, A. ; Di, C. A . Supercooling of liquid-metal droplets for X-ray-absorption-spectroscopy investigations . Phys. Rev. B Condens. Matter , 1994 , 49 ( 17 ), 11749 − 11758 .
Chen, S. ; Wang, H. Z. ; Zhao, R. Q. ; Rao, W. ; Liu, J . Liquid metal composites . Matter , 2020 , 2 ( 6 ), 1446 − 1480 .
Liang, F. C. ; Tee, B. C. K . Functional liquid metal polymeric composites: fundamentals and applications in soft wearable electronics . Adv. Funct. Mater. , 2024 , 34 ( 31 ), 2400284 .
Zhang, X. D. ; Yang, X. H. ; Zhou, Y. X. ; Rao, W. ; Gao, J. Y. ; Ding, Y. J. ; Shu, Q. Q. ; Liu, J . Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal man-agement . Energy Convers. Manag. , 2019 , 185 , 248 − 258 .
Dickey, M. D . Stretchable and soft electronics using liquid metals . Adv. Mater. , 2017 , 29 ( 27 ), 1606425 .
Liu, T. Y. ; Sen, P. ; Kim, C. J . Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices . J. Microelectromech. Syst. , 2012 , 21 ( 2 ), 443 − 450 .
Larsen, R. J. ; Dickey, M. D. ; Whitesides, G. M. ; Weitz, D. A . Viscoelastic properties of oxide-coated liquid metals . J. Rheol. , 2009 , 53 ( 6 ), 1305 − 1326 .
Dickey, M. D. ; Chiechi, R. C. ; Larsen, R. J. ; Weiss, E. A. ; Weitz, D. A. ; Whitesides, G. M . Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature . Adv. Funct. Mater. , 2008 , 18 ( 7 ), 1097 − 1104 .
Ladd, C. ; So, J. H. ; Muth, J. ; Dickey, M. D . 3D printing of free standing liquid metal microstructures . Adv. Mater. , 2013 , 25 ( 36 ), 5081 − 5085 .
Chiechi, R. ; Weiss, E. ; Dickey, M. ; Whitesides, G . Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers . Angew. Chem. , 2008 , 120 ( 1 ), 148 − 150 .
Chen, S. ; Zhao, R. Q. ; Sun, X. Y. ; Wang, H. Z. ; Li, L. ; Liu, J . Toxicity and biocompatibility of liquid metals . Adv. Healthc. Mater. , 2023 , 12 ( 3 ), 2201924 .
Ma, J. ; Krisnadi, F. ; Vong, M. H. ; Kong, M. ; Awartani, O. M. ; Dickey, M. D . Shaping a soft future: patterning liquid metals . Adv. Mater. , 2023 , 35 ( 19 ), 2205196 .
Zhang, S. L. ; Liu, Y. ; Fan, Q. N. ; Zhang, C. F. ; Zhou, T. F. ; Kalantar-Zadeh, K. ; Guo, Z. P . Liquid metal batteries for future energy storage . Energy Environ. Sci. , 2021 , 14 ( 8 ), 4177 − 4202 .
Zhu, L. F. ; Wang, B. ; Handschuh-Wang, S. ; Zhou, X. C . Liquid metal-based soft microfluidics . Small , 2020 , 16 ( 9 ), 1903841 .
Park, Y. G. ; Lee, G. Y. ; Jang, J. ; Yun, S. M. ; Kim, E. ; Park, J. U . Liquid metal-based soft electronics for wearable healthcare . Adv. Healthc. Mater. , 2021 , 10 ( 17 ), 2002280 .
Tang, Y. L. ; Huang, C. H. ; Nomura, K . Vacuum-free liquid-metal-printed 2D indium-tin oxide thin-film transistor for oxide inverters . ACS Nano , 2022 , 16 ( 2 ), 3280 − 3289 .
Zaheer, M. ; Cai, Y. C. ; Waqas, A. B. ; Abbasi, S. F. ; Zhu, G. D. ; Cong, C. X. ; Qiu, Z. J. ; Liu, R. ; Qin, Y. J. ; Zheng, L. R. ; Hu, L. G . Liquid-metal-induced memristor behavior in polymer insulators . Phys. Status Solidi RRL , 2020 , 14 ( 5 ), 2070023 .
Nayak, S. ; Li, Y. D. ; Tay, W. ; Zamburg, E. ; Singh, D. ; Lee, C. K. ; Koh, S. J. A. ; Chia, P. ; Thean, A. V. Y . Liquid-metal-elastomer foam for moldable multi-functional triboelectric energy harvesting and force sensing . Nano Energy , 2019 , 64 , 103912 .
Wang, X. L. ; Guo, R. ; Liu, J . Liquid metal based soft robotics: Materials, designs, and applications . Adv. Mater. Technol. , 2019 , 4 ( 2 ), 1800549 .
Neumann, T. V. ; Dickey, M. D . Liquid metal direct write and 3D printing: a review . Adv. Mater. Technol. , 2020 , 5 ( 9 ), 2000070 .
Liu, S. ; Shah, D. S. ; Kramer-Bottiglio, R . Highly stretchable multilayer electronic circuits using biphasic gallium-indium . Nat. Mater. , 2021 , 20 ( 6 ), 851 − 858 .
Hammock, M. L. ; Chortos, A. ; Tee, B. C. K. ; Tok, J. B. H. ; Bao, Z. N . 25th anniversary article: The evolution of electronic skin (E-skin): a brief history, design considerations, and recent progress . Adv. Mater. , 2013 , 25 ( 42 ), 5997 − 6038 .
Gao, S. J. ; Wang, R. X. ; Ma, C. X. ; Chen, Z. H. ; Wang, Y. X. ; Wu, M. ; Tang, Z. Y. ; Bao, N. ; Ding, D. ; Wu, W. X. ; Fan, F. R. ; Wu, W. Z . Wearable high-dielectric-constant polymers with core-shell liquid metal inclusions for biomechanical energy harvesting and a self-powered user interface . J. Mater. Chem. A , 2019 , 7 ( 12 ), 7109 − 7117 .
Sun, X. Y. ; Wang, X. L. ; Liu, J . Liquid metal extreme materials . Prog. Mater. Sci. , 2024 , 145 , 101298 .
Zhang, M. K. ; Yao, S. Y. ; Rao, W. ; Liu, J . Transformable soft liquid metal micro/nanomaterials . Mater. Sci. Eng. R Rep. , 2019 , 138 , 1 − 35 .
Guymon, G. G. ; Malakooti, M. H . Multifunctional liquid metal polymer composites . J. Polym. Sci. , 2022 , 60 ( 8 ), 1300 − 1327 .
Miyako, E . Convergence of liquid metal biotech-nologies for our health . Acc. Mater. Res. , 2021 , 2 ( 10 ), 858 − 862 .
Jin, C. ; Zhang, J. ; Li, X. K. ; Yang, X. Y. ; Li, J. J. ; Liu, J . Injectable 3-D fabrication of medical electronics at the target biological tissues . Sci. Rep. , 2013 , 3 , 3442 .
Zhu, X. Y. ; Duan, M. H. ; Zhang, L. ; Zhao, J. S. ; Yang, S. ; Shen, R. ; Chen, S. ; Fan, L. L. ; Liu, J . Liquid metal-enabled microspheres with high drug loading and multimodal imaging for artery embolization . Adv. Funct. Mater. , 2023 , 33 ( 18 ), 2209413 .
Sun, X. ; Wang, X. ; Yuan, B. ; Liu, J . Liquid metal-enabled cybernetic electronics . Mater. Today Phys. , 2020 , 14 , 100245 .
Sun, X. Y. ; Yuan, B. ; Sheng, L. ; Rao, W. ; Liu, J . Liquid metal enabled injectable biomedical technologies and applications . Appl. Mater. Today , 2020 , 20 , 100722 .
Liu, F. J. ; Yu, Y. Z. ; Yi, L. T. ; Liu, J . Liquid metal as reconnection agent for peripheral nerve injury . Sci. Bull. , 2016 , 61 ( 12 ), 939 − 947 .
Ambulo, C. P. ; Ford, M. J. ; Searles, K. ; Majidi, C. ; Ware, T. H . 4D-printable liquid metal-liquid crystal elastomer composites . ACS Appl. Mater. Interfaces , 2021 , 13 ( 11 ), 12805 − 12813 .
Neumann, T. V. ; Facchine, E. G. ; Leonardo, B. ; Khan, S. ; Dickey, M. D . Direct write printing of a self-encapsulating liquid metal-silicone composite . Soft Matter , 2020 , 16 ( 28 ), 6608 − 6618 .
Won, P. ; Valentine, C. S. ; Zadan, M. ; Pan, C. F. ; Vinciguerra, M. ; Patel, D. K. ; Ko, S. H. ; Walker, L. M. ; Majidi, C . 3D printing of liquid metal embedded elastomers for soft thermal and electrical materials . ACS Appl. Mater. Interfaces , 2022 , 14 ( 49 ), 55028 − 55038 .
Moon, S. ; Kim, H. ; Lee, K. ; Park, J. ; Kim, Y. ; Choi, S. Q . 3D Printable concentrated liquid metal composite with high thermal conductivity . iScience , 2021 , 24 ( 10 ), 103183 .
Sánchez Cruz, R. E. ; Zopf, S. F. ; Boley, J. W . A 3D printed liquid metal emulsion for low stress activated stretchable electronics . J. Compos. Mater. , 2023 , 57 ( 4 ), 829 − 839 .
Bokobza, L. ; Belin, C . Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes . J. Appl. Polym. Sci. , 2007 , 105 ( 4 ), 2054 − 2061 .
Carpi, F. ; Rossi, D. D . Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder . IEEE Trans. Dielectr. Electr. Insul. , 2005 , 12 ( 4 ), 835 − 843 .
Dang, Z. M. ; Yuan, J. K. ; Zha, J. W. ; Zhou, T. ; Li, S. T. ; Hu, G. H . Fundamentals, processes and applications of high-permittivity polymer–matrix composites . Prog. Mater. Sci. , 2012 , 57 ( 4 ), 660 − 723 .
Gallone, G. ; Carpi, F. ; De Rossi, D. ; Levita, G. ; Marchetti, A . Dielectric constant enhancement in a silicone elastomer filled with lead magnesium nioba-telead titanate . Mater. Sci. Eng. C , 2007 , 27 ( 1 ), 110 − 116 .
Niu, X. ; Peng, S. ; Liu, L. ; Wen, W. ; Sheng, P . Characterizing and patterning of PDMS-based conducting composites . Adv. Mater. , 2007 , 19 ( 18 ), 2682 − 2686 .
Fu, S. Y. ; Feng, X. Q. ; Lauke, B. ; Mai, Y. W . Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites . Compos. Part B Eng. , 2008 , 39 ( 6 ), 933 − 961 .
Cho, J. ; Joshi, M. S. ; Sun, C. T . Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles . Compos. Sci. Technol. , 2006 , 66 ( 13 ), 1941 − 1952 .
Ahmed, S. ; Jones, F. R . A review of particulate reinforcement theories for polymer composites . J. Mater. Sci. , 1990 , 25 ( 12 ), 4933 − 4942 .
Bartlett, M. D. ; Fassler, A. ; Kazem, N. ; Markvicka, E. J. ; Mandal, P. ; Majidi, C . Stretchable, high- k dielectric elastomers through liquid-metal inclusions . Adv. Mater. , 2016 , 28 ( 19 ), 3726 − 3731 .
Xin, Y. M. ; Peng, H. ; Xu, J. ; Zhang, J. Y . Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials . Adv. Funct. Mater. , 2019 , 29 ( 17 ), 1808989 .
Pei, D. F. ; Yu, S. Y. ; Liu, P. ; Wu, Y. P. ; Zhang, X. F. ; Chen, Y. J. ; Li, M. J. ; Li, C. X . Reversible wet-adhesive and self-healing conductive composite elastomer of liquid metal . Adv. Funct. Mater. , 2022 , 32 ( 35 ), 2204257 .
Koh, A. ; Sietins, J. ; Slipher, G. ; Mrozek, R . Deformable liquid metal polymer composites with tunable electronic and mechanical properties . J. Mater. Res. , 2018 , 33 ( 17 ), 2443 − 2453 .
Wang, M. ; Lai, Z. B. ; Jin, X. L. ; Sun, T. L. ; Liu, H. C. ; Qi, H. S . Multifunctional liquid-free ionic conductive elastomer fabricated by liquid metal induced polymerization . Adv. Funct. Mater. , 2021 , 31 ( 32 ), 2101957 .
Xu, Q. ; Oudalov, N. ; Guo, Q. T. ; Jaeger, H. M. ; Brown, E . Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium . Phys. Fluids , 2012 , 24 ( 6 ), 063101 .
Kazem, N. ; Hellebrekers, T. ; Majidi, C . Soft multifunctional composites and emulsions with liquid metals . Adv. Mater. , 2017 , 29 ( 27 ), 1605985 .
Li, C. H. ; Guan, G. Y. ; Reif, R. ; Huang, Z. H. ; Wang, R. K . Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography . J. R. Soc. Interface , 2012 , 9 ( 70 ), 831 − 841 .
Batchelor, G. K. ; Obrien, R. W . Thermal or electrical conduction through a granular material . Proc. R. Soc. Lond. A , 1977 , 355 ( 1682 ), 313 − 333 .
Oskouyi, A. B. ; Sundararaj, U. ; Mertiny, P . Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets . Materials , 2014 , 7 ( 4 ), 2501 − 2521 .
Peng, Y. ; Liu, H. Z. ; Xin, Y. M. ; Zhang, J. Y . Rheological conductor from liquid metal-polymer composites . Matter , 2021 , 4 ( 9 ), 3001 − 3014 .
Peng, Y. ; Peng, H. ; Chen, Z. X. ; Zhang, J. Y . Ultrasensitive soft sensor from anisotropic conductive biphasic liquid metal-polymer gels . Adv. Mater. , 2024 , 36 ( 8 ), e2305707 .
Liao, C. Z. ; Mak, C. ; Zhang, M. ; Chan, H. L. W. ; Yan, F . Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing . Adv. Mater. , 2015 , 27 ( 4 ), 676 − 681 .
Worfolk, B. J. ; Andrews, S. C. ; Park, S. ; Reinspach, J. ; Liu, N. ; Toney, M. F. ; Mannsfeld, S. C. B. ; Bao, Z. N . Ultrahigh electrical conductivity in solution-sheared polymeric transparent films . Proc. Natl. Acad. Sci. USA , 2015 , 112 ( 46 ), 14138 − 14143 .
Song, W. ; Fan, X. ; Xu, B. G. ; Yan, F. ; Cui, H. Q. ; Wei, Q. ; Peng, R. X. ; Hong, L. ; Huang, J. M. ; Ge, Z. Y . All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency . Adv. Mater. , 2018 , 30 ( 26 ), e1800075 .
Chen, D. ; Pei, Q. B . Electronic muscles and skins: A review of soft sensors and actuators . Chem. Rev. , 2017 , 117 ( 17 ), 11239 − 11268 .
Savagatrup, S. ; Chan, E. ; Renteria-Garcia, S. M. ; Printz, A. D. ; Zaretski, A. V. ; O’Connor, T. F. ; Rodriquez, D. ; Valle, E. ; Lipomi, D. J . Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors . Adv. Funct. Mater. , 2015 , 25 ( 3 ), 427 − 436 .
Wang, J. X. ; Lin, M. F. ; Park, S. ; Lee, P. S . Deformable conductors for human-machine interface . Mater. Today , 2018 , 21 ( 5 ), 508 − 526 .
Manjakkal, L. ; Pullanchiyodan, A. ; Yogeswaran, N. ; Hosseini, E. S. ; Dahiya, R . A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte . Adv. Mater. , 2020 , 32 ( 24 ), e1907254 .
Wang, H. M. ; Diao, Y. F. ; Lu, Y. ; Yang, H. R. ; Zhou, Q. J. ; Chrulski, K. ; D’Arcy, J. M . Energy storing bricks for stationary PEDOT supercapacitors . Nat. Commun. , 2020 , 11 ( 1 ), 3882 .
Gong, X. ; Tong, M. H. ; Xia, Y. J. ; Cai, W. Z. ; Moon, J. S. ; Cao, Y. ; Yu, G. ; Shieh, C. L. ; Nilsson, B. ; Heeger, A. J . High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm . Science , 2009 , 325 ( 5948 ), 1665 − 1667 .
Bigg, D. M . Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites . Polym. Eng. Sci. , 1979 , 19 ( 16 ), 1188 − 1192 .
Roldughin, V. I. ; Vysotskii, V. V . Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity . Prog. Org. Coat. , 2000 , 39 ( 2-4 ), 81 − 100 .
Sun, J. S. ; Gokturk, H. S. ; Kalyon, D. M . Volume and surface resistivity of low-density polyethylene filled with stainless steel fibres . J. Mater. Sci. , 1993 , 28 ( 2 ), 364 − 366 .
Chang, H. ; Zhang, P. ; Guo, R. ; Cui, Y. T. ; Hou, Y. ; Sun, Z. Q. ; Rao, W . Recoverable liquid metal paste with reversible rheological characteristic for electronics printing . ACS Appl. Mater. Interfaces , 2020 , 12 ( 12 ), 14125 − 14135 .
Daalkhaijav, U. ; Yirmibesoglu, O. D. ; Walker, S. ; Mengüç, Y . Rheological modification of liquid metal for additive manufacturing of stretchable electronics . Adv. Mater. Technol. , 2018 , 3 ( 4 ), 1700351 .
Peng, H. ; Luo, W. ; Peng, Y. ; Chen, Y. X. ; Zhang, J. Y. ; Hu, W. B . Plastics holding metallic conductivity via semi-liquid metals . Sci. China Mater. , 2023 , 66 ( 3 ), 1124 − 1131 .
0
浏览量
194
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构