浏览全部资源
扫码关注微信
1.中国科学院化学研究所,北京分子科学国家研究中心,中国科学院工程塑料重点实验室,北京 100190
2.中国科学院大学,北京 100049
*尤伟,E-mail: weiyou@iccas.ac.cn
收稿日期:2024-09-02,
录用日期:2024-10-11,
网络出版日期:2024-11-21,
纸质出版日期:2025-02-20
移动端阅览
王煜, 尤伟. 环烯烃聚合物与环烯烃共聚物的流变性能研究. 高分子通报, 2025, 38(2), 370–380
Wang, Y.; You, W. Rheological properties of cyclic olefin polymers and cyclic olefin copolymers. Polym. Bull. (in Chinese), 2025, 38(2), 370–380
王煜, 尤伟. 环烯烃聚合物与环烯烃共聚物的流变性能研究. 高分子通报, 2025, 38(2), 370–380 DOI: 10.14028/j.cnki.1003-3726.2024.24.255.
Wang, Y.; You, W. Rheological properties of cyclic olefin polymers and cyclic olefin copolymers. Polym. Bull. (in Chinese), 2025, 38(2), 370–380 DOI: 10.14028/j.cnki.1003-3726.2024.24.255.
环烯烃聚合物(COP)与环烯烃共聚物(COC)分别由降冰片烯衍生物通过烯烃开环易位聚合再氢化、降冰片烯衍生物与乙烯单体加成共聚反应两种方式制备而得。由于其优异的性能,COP和COC已经成为全球医疗包装和光学产品消费领域的重要材料。通过比较它们的流变特性对温度的依赖性,发现COP的熔体黏度高于COC。Arrhenius方程式的分析结果显示光学级COP样品F52R的流动活化能明显高于其他样品。利用温度-时间重叠原理建构各样品的主曲线,成功得到各自的缠结模量
G
N
o
,并结合热机械分析仪(TMA)结果进一步决定缠结分子量(
M
e
)。COC的
M
e
可达16~18 kDa,约为COP结果的3~4倍。该研究结果不仅为材料加工参数的选择提供了依据,也能加深读者对COP与COC本征特性差异的理解。
Cycloolefin polymers (COPs) and cycloolefin copolymers (COCs) are synthesized from norbornene derivatives using two respective methods: ring-opening metathesis polymerization followed
by hydrogenation
and addition copolymerization with ethylene monomers. Recognized for their excellent performance
COPs and COCs have become the important materials in the global medical packaging and optical product sectors in recent years. A comparison of the temperature dependence of rheological properties reveals that COPs exhibit a higher melt viscosity than COCs. The Arrhenius equation analysis indicates that the optical-grade COP sample F52R has a notably higher flow activation energy compared to other samples. By the time-temperature superposition principle
master curves for each sample were constructed
yielding the entanglement modulus (
G
N
o
). The entanglement molecular weight (
M
e
) is further determined with the TMA results for each sample. It was found that COCs’
M
e
can reach 16–18 kDa
which is approximately 3–4 times that of COPs’. These findings are expected to guide the selection of processing parameter in the COP and COC industries
and provide new insights in the intrinsic property differences between COPs and COCs.
Yamazaki, M . Industrialization and application development of cyclo-olefin polymer . J. Mol. Catal. A Chem. , 2004 , 213 ( 1 ), 81 − 87 .
Nunes, P. S. ; Ohlsson, P. D. ; Ordeig, O. ; Kutter, J. P . Cyclic olefin polymers: emerging materials for lab-on-a-chip applications . Microfluid. Nanofluid. , 2010 , 9 ( 2 ), 145 − 161 .
Widyaya, V. T. ; Vo, H. T. ; Dhimas Dhewangga Putra, R. ; Hwang, W. S. ; Ahn, B. S. ; Lee, H . Preparation and characterization of cycloolefin polymer based on dicyclopentadiene (DCPD) and dimethanooctahydronaphthalene (DMON) . Eur. Polym. J. , 2013 , 49 ( 9 ), 2680 − 2688 .
Hayano, S. ; Nakama, Y . Iso- and syndio-selective ROMP of norbornene and tetracyclododecene: Effects of tacticity control on the hydrogenated ring-opened poly(cycloolefin)s . Macromolecules , 2014 , 47 ( 22 ), 7797 − 7811 .
董海鸥 , 唐智龙 , 王东光 , 周梦娜 , 王玉彬 . 环烯烃聚合物及共聚物技术进展 . 石化技术与应用 , 2023 , 41 , 391 − 395 .
Ishii, S. ; Ota, Y. ; Matsuoka, S. I. ; Suzuki, M . Spiro-fluorene-containing cyclic olefin polymers . ACS Appl. Polym. Mater. , 2023 , 5 ( 9 ), 7614 − 7620 .
Chae, C. G. ; Go, Y. ; Choi, J. ; Park, D. A. ; Ho, L. N. T. ; Bak, I. G. ; Park, J. W. ; Jung, K. ; Park, S. ; Lee, W. ; Kim, D. G. ; Kim, H. ; Ryu, J. Y. ; Chung, T. M. ; Park, B. K. ; Kim, Y. S . Palladium(II)-catalyzed synthesis of a vinyl-addition ultrahigh-molecular-weight polynorbornene copolymer with an entanglement network for enhanced fracture resistance . Macromolecules , 2024 , 57 ( 2 ), 565 − 573 .
Nickel, A. ; Edgecombe, B. D . Industrial applications of ROMP . Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier , 2012 , 749 − 759 .
Yu, S. T. ; Na, S. J. ; Lim, T. S. ; Lee, B. Y . Preparation of a bulky cycloolefin/ethylene copolymer and its tensile properties . Macromolecules , 2010 , 43 ( 2 ), 725 − 730 .
许蔷 , 高玉李 , 王科峰 , 义建军 . 环烯烃共聚物研究进展 . 高分子通报 , 2019 , ( 1 ), 64 − 74 .
Boggioni, L. ; Sidari, D. ; Losio, S. ; Stehling, U. M. ; Auriemma, F. ; Di Girolamo, R. ; De Rosa, C. ; Tritto, I . Ethylene–co–norbornene copolymerization in the presence of a chain transfer agent . Eur. Polym. J. , 2018 , 107 , 54 − 66 .
Boggioni, L. ; Harakawa, H. ; Losio, S. ; Nomura, K. ; Tritto, I . Synthesis of ethylene–norbornene–1-octene terpolymers with high 1-octene contents, molar masses, and tunable T g values, in high yields using half-titanocene catalysts . Polym. Chem. , 2021 , 12 ( 30 ), 4372 − 4383 .
刘炬阳 , 高欢 , 王菲 , 黄冬 , 潘莉 , 李悦生 . 链穿梭共聚合制备环烯烃多嵌段共聚物 . 高分子学报 , 2023 , 54 ( 11 ), 1708 − 1719 .
Zhang, Y. R. ; Yang, J. X. ; Pan, L. ; Li, Y. S . Synthesis of high performance cyclic olefin polymers using highly efficient WCl 6 -based catalyst system . Chinese J. Polym. Sci. , 2018 , 36 ( 2 ), 214 − 221 .
Dong, S. Q. ; Duan, X. Z. ; Nan, T. H. ; Lin, C. J. ; Liu, B. ; Cui, D. M . Substituent effect of styryl monomers on composition and property enhancement of dicyclopentadiene-based cycloolefin copolymers . Macromolecules , 2023 , 56 ( 21 ), 8912 − 8919 .
Huang, D. ; Lu, X. ; Zhang, K. Y. ; Wang, Y. F. ; Wang, F. ; Gao, H. ; Ding, Y. L. ; Pan, L. ; Li, Y. ; Li, Y. S . Ultra-high-molecular weight cyclic olefin copolymers with excellent all-round performance prepared via highly effective quasi-living copolymerization . Chem. Eng. J. , 2024 , 494 , 153256 .
Agha, A. ; Waheed, W. ; Alamoodi, N. ; Mathew, B. ; Alnaimat, F. ; Abu-Nada, E. ; Abderrahmane, A. ; Alazzam, A . A review of cyclic olefin copolymer applications in microfluidics and microdevices . Macromol. Mater. Eng. , 2022 , 307 ( 8 ), 2200053 .
Bernard, M. ; Jubeli, E. ; Bakar, J. ; Tortolano, L. ; Saunier, J. ; Yagoubi, N . Biocompatibility assessment of cyclic olefin copolymers: impact of two additives on cytotoxicity, oxidative stress, inflammatory reactions, and hemocompatibility . J. Biomed. Mater. Res. A , 2017 , 105 ( 12 ), 3333 − 3349 .
Aubrecht, P. ; Malinský, P. ; Novák, J. ; Smejkal, J. ; Jagerová, A. ; Matoušek, J. ; Štofik, M. ; Liegertová, M. ; Luxa, J. ; Macková, A. ; Malý, J . Patterning of COC polymers by middle-energy ion beams for selective cell adhesion in microfluidic devices . Adv. Mater. Interfaces , 2024 , 11 ( 18 ), 2301077 .
Lin, Y. J. ; Dias, P. ; Chen, H. Y. ; Hiltner, A. ; Baer, E . Relationship between biaxial orientation and oxygen permeability of polypropylene film . Polymer , 2008 , 49 ( 10 ), 2578 − 2586 .
Renardy, M . Current issues in non-Newtonian flows: a mathematical perspective . J. Non Newton. Fluid Mech. , 2000 , 90 ( 2-3 ), 243 − 259 .
Jena, R. K. ; Chen, X. ; Yue, C. Y. ; Lam, Y. C . Rheological (visco-elastic behaviour) analysis of cyclic olefin copolymers with application to hot embossing for microfabrication . J. Micromech. Microeng. , 2011 , 21 ( 8 ), 085029 .
Roy, S. ; Yue, C. Y. ; Wang, Z. Y. ; Anand, L . Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers . Sens. Actuat. B Chem. , 2012 , 161 ( 1 ), 1067 − 1073 .
Rwei, S. P. ; Lin, Y. T. ; Su, Y. Y . Investigation on the spinnability of metallocene cyclic olefins copolymer melt . Text. Res. J. , 2012 , 82 ( 4 ), 315 − 323 .
Jena, R. K. ; Chen, X. ; Yue, C. Y. ; Lam, Y. C . Viscosity of COC polymer (TOPAS) near the glass transition temperature: Experimental and modeling . Polym. Test. , 2010 , 29 ( 8 ), 933 − 938 .
Jang, K. S . Compatibilizing effects for semicrystalline polymer-infiltrated amorphous polymer matrix: mechanical (toughness), thermal, and morphological behavior of compatibilized polypropylene/polycarbonate blends . J. Appl. Polym. Sci. , 2019 , 136 ( 25 ), e47684 .
Jafari, S. H. ; Hesabi, M. N. ; Ali Khonakdar, H. ; Asl-Rahimi, M . Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends . J. Polym. Res. , 2011 , 18 ( 4 ), 821 − 831 .
Gopanna, A. ; Thomas, S. P. ; Rajan, K. P. ; Rajan, R. ; Rainosalo, E. ; Zavašnik, J. ; Chavali, M . Investigation of mechanical, dynamic mechanical, rheological and morphological properties of blends based on polypropylene (PP) and cyclic olefin copolymer (COC) . Eur. Polym. J. , 2018 , 108 , 439 − 451 .
Chai, K. Q. ; Du, S. H. ; Wang, W. H. ; He, X. L . Viscoelasticity, tensile properties, and microstructure of cyclic olefin copolymer/SBS/SEBS elastomer blends . Macromol. Chem. Phys. , 2023 , 224 ( 18 ), 2300127 .
Zhang, F. ; Dong, C. L. ; Lei, H. ; Guo, F. ; Shen, R. F. ; Xing, Z. ; Wu, G. Z . Effects of gamma radiation on cyclic olefin copolymers with varied norbornene content: impacts on structure and properties at sterilization doses . Polym. Degrad. Stabil. , 2024 , 227 , 110881 .
Data sheet of zeonex 690R . From the website : https://www.zeonex.com/downloads/datasheets/ https://www.zeonex.com/downloads/datasheets/ .
Data sheet of E48R . From thewebsite : https://www.zeonex.com/downloads/datasheets/optics/ZEONEX_E48R.pdf https://www.zeonex.com/downloads/datasheets/optics/ZEONEX_E48R.pdf .
Data sheet of F52R . From the website : https://www.zeonex.com/downloads/datasheets/optics/ZEONEX_F52R.pdf https://www.zeonex.com/downloads/datasheets/optics/ZEONEX_F52R.pdf .
Data sheet of Topas 5013 . From the website : https://www.polyplastics.com/en/product/lines/medical/medical.pdf https://www.polyplastics.com/en/product/lines/medical/medical.pdf .
Data sheet of Topas 5014CL . From the website : https://www.mitsuichemicals.cn/special/apel/lineup/ https://www.mitsuichemicals.cn/special/apel/lineup/ .
Li, J. C. ; Si, Z. C. ; Shang, K. ; Feng, Y. ; Wang, S. H. ; Li, S. T . Kinetic and thermodynamic investigation on diffusion-limited crosslinking reaction behaviors of peroxide-induced low-density polyethylene . Polym. Test. , 2023 , 124 , 108095 .
Wang, Y. ; Wang, Z. F. ; Zhu, P. ; Liu, X. R. ; Wang, L. ; Dong, X. ; Wang, D. J . Microphase separation/crosslinking competition-based ternary microstructure evolution of poly(ether- b -amide). RSC Adv. , 2021 , 11 ( 12 ), 6934 − 6942 .
Fulcher, G. S . Analysis of recent measurements of the viscosity of glasses . J. Am. Ceram. Soc. , 1992 , 75 ( 5 ), 1043 − 1055 .
Tammann, G. ; Hesse, W . Die Abhängigkeit der viscosität von der temperatur Bie unterkühlten flüssigkeiten . Z. Anorg. Allg. Chem. , 1926 , 156 ( 1 ), 245 − 257 .
Eckstein, A. ; Suhm, J. ; Friedrich, C. ; Maier, R. D. ; Sassmannshausen, J. ; Bochmann, M. ; Mülhaupt, R . Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts . Macromolecules , 1998 , 31 ( 4 ), 1335 − 1340 .
Wang, C. ; Chien, H. S. ; Yan, K. W. ; Hung, C. L. ; Hung, K. L. ; Tsai, S. J. ; Jhang, H. J . Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers . Polymer , 2009 , 50 ( 25 ), 6100 − 6110 .
Ferry, J. D . Viscoelastic Properties of Polymers ( Third Edition ), New York : John Wiley & Sons , 1980 .
Wu, S. H . Chain structure and entanglement . J. Polym. Sci. Part B Polym. Phys. , 1989 , 27 ( 4 ), 723 − 741 .
Simha, R. ; Boyer, R. F . On a general relation involving the glass temperature and coefficients of expansion of polymers . 1962 , 37 ( 5 ), 1003 − 1007 .
Orwoll, R. A. ; Flory, P. J . Equation- of-state parameters for normal alkanes. Correlation with chain length . J. Am. Chem. Soc. , 1967 , 89 ( 26 ), 6814 − 6822 .
Mark, J. E . Physical Properties of Polymers Handbook ( second edition ), Springer . 2007 , 443 − 454 .
0
浏览量
268
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构