浏览全部资源
扫码关注微信
上海交通大学化学化工学院,教育部变革性分子前沿科学中心,上海 200240
*俞炜,E-mail: wyu@sjtu.edu.cn;颜徐州,E-mail: xzyan@sjtu.edu.cn
纸质出版日期:2025-02-20,
网络出版日期:2024-11-28,
收稿日期:2024-09-09,
录用日期:2024-10-24
移动端阅览
王文彬, 程林, 张照明, 白瑞雪, 俞炜, 颜徐州. 机械互锁聚合物的流变学研究. 高分子通报, 2025, 38(2), 226–243.
Wang, W. B.; Cheng, L.; Zhang, Z. M.; Bai, R. X.; Yu, W.; Yan, X. Z. Rheological research of mechanically interlocked polymers. Polym. Bull. (in Chinese), 2025, 38(2), 226–243.
王文彬, 程林, 张照明, 白瑞雪, 俞炜, 颜徐州. 机械互锁聚合物的流变学研究. 高分子通报, 2025, 38(2), 226–243. DOI: 10.14028/j.cnki.1003-3726.2024.24.260.
Wang, W. B.; Cheng, L.; Zhang, Z. M.; Bai, R. X.; Yu, W.; Yan, X. Z. Rheological research of mechanically interlocked polymers. Polym. Bull. (in Chinese), 2025, 38(2), 226–243. DOI: 10.14028/j.cnki.1003-3726.2024.24.260.
机械互锁聚合物是一类由机械键构成的特殊拓扑材料,其内部丰富的分子内运动赋予材料独特的性能。流变学作为揭示聚合物结构与性能关系的研究手段,在机械互锁聚合物的研究中展现出独特的魅力。本文重点综述了利用流变学方法探究机械互锁聚合物构效关系的最新进展。首先讨论了机械互锁聚合物中机械键的微观运动,然后分析了机械键运动对材料力学行为及黏弹性的影响;最后,简要总结了机械互锁聚合物流变学研究中的挑战,并展望了其未来的发展方向。
Mechanically interlocked polymers (MIPs) are a unique class of topological materials composed of mechanical bonds
where the rich intramolecular motions impart the materials with distinctive properties. Rheology
as an efficient tool for elucidating the structure-properties relationships of polymeric materials
has shown particular appeal in the study of MIPs. This paper provides a focused review of the latest advances in using rheological methods to explore the structure-property relationships of MIPs. The review first examines the microscopic motions of mechanical bonds within MIPs
followed by an analysis of how these mechanical bonds influence the mechanical behaviors and viscoelasticity of mechanically interlocked materials. Finally
the challenges in the rheological study of MIPs are briefly summarized
and future directions for related research are discussed.
机械互锁聚合物流变学机械键运动构效关系拓扑高分子
Mechanically interlocked polymersRheologyMotion of mechanical bondsStructure-property relationshipTopological polymers
Ghiassinejad, S.; Ahmadi, M.; van Ruymbeke, E.; Fustin, C. A. Dynamics of ring-containing polymers: macromolecular rotaxanes, polyrotaxanes and slide-ring networks. Prog. Polym. Sci., 2024, 155, 101854.
Hart, L. F.; Hertzog, J. E.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J. Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater., 2021, 6, 508−530.
Zhang, Z. M.; Zhao, J.; Yan, X. Z. Mechanically interlocked polymers with dense mechanical bonds. Acc. Chem. Res., 2024, 57(6), 992−1006.
Chen, L. Y.; Sheng, X. R.; Li, G. F.; Huang, F. H. Mechanically interlocked polymers based on rotaxanes. Chem. Soc. Rev., 2022, 51(16), 7046−7065.
Jiménez, M. C.; Dietrich-Buchecker, C.; Sauvage, J. P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed., 2000, 39(18), 3284−3287.
Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S. H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. Molecular borromean rings. Science, 2004, 304(5675), 1308−1312.
Sauvage, J. P. From chemical topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed., 2017, 56(37), 11080−11093.
Feringa, B. L. The art of building small: from molecular switches to motors (Nobel lecture). Angew. Chem. Int. Ed., 2017, 56(37), 11060−11078.
Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed., 2017, 56(37), 11094−11125.
Liu, J. X.; Chen, K.; Redshaw, C. Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[n]uril homologues and derivatives. Chem. Soc. Rev., 2023, 52(4), 1428−1455.
Harrison, I. T.; Harrison, S. Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc., 1967, 89(22), 5723−5724.
Zhao, D.; Zhang, Z. M.; Zhao, J.; Liu, K.; Liu, Y. H.; Li, G. F.; Zhang, X. H.; Bai, R. X.; Yang, X.; Yan, X. Z. A mortise-and-tenon joint inspired mechanically interlocked network. Angew. Chem. Int. Ed., 2021, 60(29), 16224−16229.
Wang, X. Q.; Li, W. J.; Wang, W.; Yang, H. B. Rotaxane dendrimers: alliance between giants. Acc. Chem. Res., 2021, 54(21), 4091−4106.
Wang, Y. H.; Yang, L.; Cheng, L.; Zhao, J.; Bai, R. X.; Wang, W. B.; Qu, S. L.; Zhang, Z. M.; Yu, W.; Yan, X. Z. Strengthening and toughening styrene-butadiene rubber by mechanically interlocked cross-links. Sci. China Chem., 2024, 67(10), 3414−3422.
Luo, Z.; Zhang, X. H.; Zhao, J.; Bai, R. X.; Wang, C. Y.; Wang, Y. H.; Zhao, D.; Yan, X. Z. Mechanically interlocked [2]rotaxane aerogels with tunable mor-phologies and mechanical properties. Angew. Chem. Int. Ed., 2023, 62(37), e202306489.
Wasserman, E. The preparation of interlocking rings: a catenane1. J. Am. Chem. Soc., 1960, 82(16), 4433−4434.
Liu, G. C.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J. Polycatenanes: synthesis, characterization, and physical understanding. Chem. Soc. Rev., 2022, 51(12), 4928−4948.
Fuller, A. M L.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. Selecting topology and connectivity through metal-directed macrocyclization reactions: a square planar palladium [2]catenate and two noninterlocked isomers. J. Am. Chem. Soc., 2005, 127(36), 12612−12619.
Li, G. F.; Wang, L.; Wu, L.; Guo, Z. W.; Zhao, J.; Liu, Y. H.; Bai, R. X.; Yan, X. Z. Woven polymer networks via the topological transformation of a [2]catenane. J. Am. Chem. Soc., 2020, 142(33), 14343−14349.
Fustin, C. A.; Bailly, C.; Clarkson, G. J.; De Groote, P.; Galow, T. H.; Leigh, D. A.; Robertson, D.; Slawin, A. M. Z.; Wong, J. K. Y. Mechanically linked polycarbonate. J. Am. Chem. Soc., 2003, 125(8), 2200−2207.
Wu, Q.; Rauscher, P. M.; Lang, X. L.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Poly[n]catenanes: synthesis of molecular interlocked chains. Science, 2017, 358(6369), 1434−1439.
Seale, J. S. W.; Feng, Y. N.; Feng, L.; Astumian, R. D.; Stoddart, J. F. Polyrotaxanes and the pump paradigm. Chem. Soc. Rev., 2022, 51(20), 8450−8475.
Hashidzume, A.; Yamaguchi, H.; Harada, A. Cyclodextrin-based rotaxanes: from rotaxanes to polyrotaxanes and further to functional materials. Eur. J. Org. Chem., 2019, 2019(21), 3344−3357.
Moulin, E.; Carmona-Vargas, C. C.; Giuseppone, N. Daisy chain architectures: from discrete molecular entities to polymer materials. Chem. Soc. Rev., 2023, 52(21), 7333−7358.
Bai, R. X.; Zhang, Z. M.; Di, W. S.; Yang, X.; Zhao, J.; Ouyang, H.; Liu, G. Q.; Zhang, X. H.; Cheng, L.; Cao, Y.; Yu, W.; Yan, X. Z. Oligo[2]catenane that is robust at both the microscopic and macroscopic scales. J. Am. Chem. Soc., 2023, 145(16), 9011−9020.
Yasuda, Y.; Hidaka, Y.; Mayumi, K.; Yamada, T.; Fujimoto, K.; Okazaki, S.; Yokoyama, H.; Ito, K. Molecular dynamics of polyrotaxane in solution inves-tigated by quasi-elastic neutron scattering and molecular dynamics simulation: sliding motion of rings on polymer. J. Am. Chem. Soc., 2019, 141(24), 9655−9663.
Cai, K.; Shi, Y.; Zhuang, G. W.; Zhang, L.; Qiu, Y. Y.; Shen, D. K.; Chen, H. L.; Jiao, Y.; Wu, H.; Cheng, C. Y.; Stoddart, J. F. Molecular-pump-enabled synthesis of a daisy chain polymer. J. Am. Chem. Soc., 2020, 142(23), 10308−10313.
Sawada, J.; Aoki, D.; Otsuka, H.; Takata, T. A guiding principle for strengthening crosslinked polymers: synthesis and application of mobility-controlling rotaxane crosslinkers. Angew. Chem. Int. Ed., 2019, 58(9), 2765−2768.
Yang, L.; Wang, Y. H.; Liu, G. Q.; Zhao, J.; Cheng, L.; Zhang, Z. M.; Bai, R. X.; Liu, Y. H.; Yang, M. L.; Yu, W.; Yan, X. Z. Mechanically interlocked polyrotaxane networks with collective motions of multiple main-chain mechanical bonds. Angew. Chem. Int. Ed., 2024, 63(43), e202410834.
Zhang, X. H.; Liu, K.; Zhao, J.; Zhang, Z. M.; Luo, Z.; Guo, Y. C.; Zhang, H.; Wang, Y. M.; Bai, R. X.; Zhao, D.; Yang, X.; Liu, Y. H.; Yan, X. Z. Mechanically interlocked aerogels with densely rotaxanated backbones. J. Am. Chem. Soc., 2022, 144(25), 11434−11443.
郑强. 高分子流变学. 北京: 科学出版社, 2020, 1−7.
Liu, Z. W.; Xiong, Z. Q.; Nie, Z. J.; Yu, W. Correlation between linear and nonlinear material functions under large amplitude oscillatory shear. Phys. Fluids, 2020, 32(9), 093105.
Nie, Z. J.; Yu, W.; Zhou, C. X. Nonlinear rheological behavior of multiblock copolymers under large amplitude oscillatory shear. J. Rheol., 2016, 60(6), 1161−1179.
宋义虎, 郑强. 粒子填充高分子熔体的动态流变行为. 高分子通报, 2013, (9), 22−34.
Wang, W.; Zhou, S.; Yu, X.; Guo, Q.; Ma, Y.; Song, J.; Zhang, L.; Yan, X.; Han, L.; Liao, Q.; Li, X.; Zhang, W.; Mai, Y.; Zhang, S.; Che, S.; Yang, H.; Fu, X.; Wang, M. What can topology bring to chemistry? CCS Chem., 2024, DOI: 10.31635/ccschem.024.202404398https://doi.org/10.31635/ccschem.024.202404398.
张照明, 赵骏, 颜徐州. 协同的共价-超分子聚合物. 高分子学报, 2022, 53(7), 691−706.
卢红斌, 杨玉良. 支化聚合物的熔体流变特性. 高分子通报, 2002, (1), 16−23.
Wang, Y. M.; Zhang, H.; Zhang, Z. M.; Zhao, J.; Bai, R. X.; Liu, Y. H.; Zhang, X. H.; Yan, X. Z. Thermo-responsive topological metamorphosis in covalent-and-supramolecular polymer architectures. Aggregate, 2022, 3(6), e206.
Wang, Y. H.; Deng, J. X.; Zhao, J.; Ding, Y.; Yang, L.; Zhang, Z. M.; Yan, X. Z. Bolstering the mechanical robustness of supramolecular polymer network by mechanical bond. Chinese J. Polym. Sci., 2024, 42(10), 1536−1544.
Yu, P.; Huang, Q. R.; Wang, Y.; Peng, W.; Jia, Z. C.; Wang, H. Y.; Ma, J. J.; Wang, C. Y.; Yan, X. Z. Water-driven malleable, weldable and eco-friendly recyclable carbon fiber reinforced dynamic composites. Chin. J. Chem., 2024, 42(5), 516−522.
Weidmann, J. L.; Kern, J. M.; Sauvage, J. P.; Geerts, Y.; Muscat, D.; Müllen, K. Poly[2]-catenanes containing alternating topological and covalent bonds. Chem. Commun., 1996, (10), 1243−1244.
Hamers, C.; Kocian, O.; Raymo, F. M.; Stoddart, J. F. A poly(bis[2]catenane) containing a combination of covalent, mechanical, and coordinative bonds. Adv. Mater., 1998, 10(16), 1366−1369.
Clark, P. G.; Day, M. W.; Grubbs, R. H. Switching and extension of a [c2]daisy-chain dimer polymer. J. Am. Chem. Soc., 2009, 131(38), 13631−13633.
Yang, X.; Cheng, L.; Zhang, Z. M.; Zhao, J.; Bai, R. X.; Guo, Z. W.; Yu, W.; Yan, X. Z. Amplification of integrated microscopic motions of high-density[2]rotaxanes in mechanically interlocked networks. Nat. Commun., 2022, 13(1), 6654.
Zhang, Z. M.; You, W.; Li, P. T.; Zhao, J.; Guo, Z. W.; Xu, T. J.; Chen, J. Q.; Yu, W.; Yan, X. Z. Insights into the correlation of microscopic motions of [c2]daisy chains with macroscopic mechanical performance for mechanically interlocked networks. J. Am. Chem. Soc., 2023, 145(1), 567−578.
Zhao, J.; Zhang, Z. M.; Cheng, L.; Bai, R. X.; Zhao, D.; Wang, Y. M.; Yu, W.; Yan, X. Z. Mechanically interlocked vitrimers. J. Am. Chem. Soc., 2022, 144(2), 872−882.
Zhao, J.; Zhang, Z. M.; Wang, C. Y.; Yan, X. Z. Synergistic dual dynamic bonds in covalent adaptable networks. CCS Chem., 2024, 6(1), 41−56.
Yang, M. L.; Chen, S.; Zhang, Z. M.; Cheng, L.; Zhao, J.; Bai, R. X.; Wang, W. B.; Gao, W. Z.; Yu, W.; Jiang, X. S.; Yan, X. Z. Stimuli-responsive mechanically interlocked polymer wrinkles. Nat. Commun., 2024, 15(1), 5760.
Sawada, J.; Aoki, D.; Uchida, S.; Otsuka, H.; Takata, T. Synthesis of vinylic macromolecular rotaxane cross-linkers endowing network polymers with toughness. ACS Macro Lett., 2015, 4(5), 598−601.
Bai, R. X.; Wang, W. B.; Gao, W. Z.; Yang, M. L.; Zhang, X. H.; Wang, C. Y.; Fan, Z. W.; Yang, L.; Zhang, Z. M.; Yan, X. Z. Dynamically cross-linked oligo[2]rotaxane networks mediated by metal-coordination. Angew. Chem. Int. Ed., 2024, 63(42), e202410127.
Okumura, Y.; Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater., 2001, 13(7), 485−487.
Kato, K.; Yasuda, T.; Ito, K. Viscoelastic properties of slide-ring gels reflecting sliding dynamics of partial chains and entropy of ring components. Macromolecules, 2013, 46(1), 310−316.
Mayumi, K.; Nagao, M.; Endo, H.; Osaka, N.; Shibayama, M.; Ito, K. Dynamics of polyrotaxane investigated by neutron spin echo. Phys. B Condens. Matter, 2009, 404(17), 2600−2602.
Ito, K. Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym. J., 2012, 44(1), 38−41.
Wang, Y. M.; Zhang, Z. M.; Zhang, H.; Zhao, J.; Liu, G. Q.; Bai, R. X.; Liu, Y. H.; You, W.; Yu, W.; Yan, X. Z. Mechanically interlocked [an]daisy chain networks. Chem, 2023, 9(8), 2206−2221.
Hart, L. F.; Lenart, W. R.; Hertzog, J. E.; Oh, J.; Turner, W. R.; Dennis, J. M.; Rowan, S. J. Doubly threaded slide-ring polycatenane networks. J. Am. Chem. Soc., 2023, 145(22), 12315−12323.
Chen, L. Y.; You, W.; Wang, J.; Yang, X.; Xiao, D.; Zhu, H.; Zhang, Y. F.; Li, G. F.; Yu, W.; Sessler, J. L.; Huang, F. H. Enhancing the toughness and strength of polymers using mechanically interlocked hydrogen bonds. J. Am. Chem. Soc., 2024, 146(1), 1109−1121.
0
浏览量
17
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构