浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院,高分子材料工程国家重点实验室,成都 610065
*邓华,E-mail: huadeng@scu.edu.cn
收稿日期:2024-10-13,
录用日期:2024-11-26,
网络出版日期:2025-01-06,
纸质出版日期:2025-04-20
移动端阅览
刘熙远, 傅强, 邓华. 多功能聚合物基辐射制冷材料的发展近况及应用. 高分子通报, 2025, 38(4), 572–589.
Liu, X. Y.; Fu, Q.; Deng, H. Recent development and application of multi-functional polymer-based passive daytime radiation cooling materials. Polym. Bull. (in Chinese), 2025, 38(4), 572–589.
刘熙远, 傅强, 邓华. 多功能聚合物基辐射制冷材料的发展近况及应用. 高分子通报, 2025, 38(4), 572–589. DOI: 10.14028/j.cnki.1003-3726.2025.24.308.
Liu, X. Y.; Fu, Q.; Deng, H. Recent development and application of multi-functional polymer-based passive daytime radiation cooling materials. Polym. Bull. (in Chinese), 2025, 38(4), 572–589. DOI: 10.14028/j.cnki.1003-3726.2025.24.308.
随着全球变暖和温室效应的加剧,全球制冷需求日益增大,然而传统的制冷方式不仅消耗大量的能源,而且其产生的CO
2
和臭氧(O
3
)等温室气体又会导致温室效应的加剧,造成恶性循环。因此,急需发展一种清洁的冷却技术。被动日间辐射冷却已被证实是一种有效的策略,它能以辐射的形式将热量传递到寒冷的外太空,在不消耗能源、不利用其他辅助设备的前提下实现制冷。本文从被动日间辐射冷却技术的原理出发,分析了日间辐射冷却薄膜/涂层材料的设计思路,并归纳了其实现多功能化的研究方向,及其主要的应用领域,最后对辐射冷却技术当前存在的挑战以及未来的发展趋势进行了展望。
With the intensification of global warming and the greenhouse effect
the global demand for refrigeration is increasing day by day. However
the traditional refrigeration method not only consumes a lot of energy
but also produces greenhouse gases such as CO
2
and ozone (O
3
)
which will lead to the intensification of the greenhouse effect
resulting in a vicious circle. There is an urgent need to develop a clean cooling technology. Passive daytime radiative cooling has been proven to be an effective strategy to transfer heat in the form of radiation to the cold outer space
and achieve the purpose of cooling without consuming energy or utilizing auxiliary equipment. Based on the principle of passive daytime radiant cooling technology
this paper analyzes the design ideas of daytime radiant cooling films and coatings
and analyzes and expounds the development history and latest research progress of radiant cooling materials. Finally
combined with the current application in building cooling and personal thermal management
the future development direction of this technology is prospected.
Bliss, R. W . Atmospheric radiation near the surface of the ground: a summary for engineers . Sol. Energy , 1961 , 5 ( 3 ), 103 – 120 .
Zevenhoven, R. ; Fält, M . Radiative cooling through the atmospheric window: a third, less intrusive geoeng-ineering approach . Energy , 2018 , 152 , 27 – 33 .
Zhong, S. J. ; Yuan, S. X. ; Zhang, X. ; Zhang, J. W. ; Xu, L. ; Xu, T. Q. ; Zuo, T. ; Cai, Y. ; Yi, L. M . Hierarchical cellulose aerogel reinforced with in situ -assembled cellulose nanofibers for building cooling . ACS Appl. Mater. Interfaces , 2023 , 15 ( 33 ), 39807 – 39817 .
Zhang, Q. ; Wang, S. H. ; Wang, X. Y. ; Jiang, Y. ; Li, J. L. ; Xu, W. L. ; Zhu, B. ; Zhu, J . Recent progress in daytime radiative cooling: advanced material designs and appli-cations . Small Methods , 2022 , 6 ( 4 ), e2101379 .
Lan, C. T. ; Meng, J. ; Pan, C. X. ; Jia, L. Y. ; Pu, X . Hierarchical porous dual-mode thermal management fabrics achieved by regulating solar and body radiations . Mater. Horiz. , 2024 , 11 ( 7 ), 1760 – 1768 .
Granqvist, C. G. ; Hjortsberg, A . Surfaces for radiative cooling: silicon monoxide films on aluminum . Appl. Phys. Lett. , 1980 , 36 ( 2 ), 139 .
Lu, X. ; Xu, P. ; Wang, H. L. ; Yang, T. ; Hou, J . Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art . Renew. Sustain. Energy Rev. , 2016 , 65 , 1079 – 1097 .
Catalanotti, S. ; Cuomo, V. ; Piro, G. ; Ruggi, D. ; Silves-trini, V. ; Troise, G . The radiative cooling of selective surfaces . Sol. Energy , 1975 , 17 ( 2 ), 83 – 89 .
Granqvist, C. G. ; Hjortsberg, A . Radiative cooling to low temperatures: general considerations and appl-ication to selectively emitting SiO films . J. Appl. Phys. , 1981 , 52 ( 6 ), 4205 – 4220 .
Rephaeli, E. ; Raman, A. ; Fan, S. H . Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling . Nano Lett. , 2013 , 13 ( 4 ), 1457 – 1461 .
Lu, X. ; Xu, P. ; Wang, H. L. ; Yang, T. ; Hou, J . Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art . Renew. Sustain. Energy Rev. , 2016 , 65 , 1079 – 1097 .
Pirvaram, A. ; Talebzadeh, N. ; Leung, S. N. ; O’Brien, P. G . Radiative cooling for buildings: a review of techno-enviro-economics and life-cycle assessment methods . Renew. Sustain. Energy Rev. , 2022 , 162 , 112415 .
Zhao, B. ; Hu, M. K. ; Ao, X. Z. ; Xuan, Q. D. ; Pei, G . Spectrally selective approaches for passive cooling of solar cells: a review . Appl. Energy , 2020 , 262 , 114548 .
Dong, Y. ; Zhang, X. P. ; Chen, L. L. ; Meng, W. F. ; Wang, C. H. ; Cheng, Z. M. ; Liang, H. X. ; Wang, F. Q . Progress in passive daytime radiative cooling: a review from optical mechanism, performance test, and application . Renew. Sustain. Energy Rev. , 2023 , 188 , 113801 .
Zhao, D. L. ; Aili, A. ; Zhai, Y. ; Xu, S. Y. ; Tan, G. ; Yin, X. B. ; Yang, R. G . Radiative sky cooling: Fundamental principles, materials, and applications . Appl. Phys. Rev. , 2019 , 6 ( 2 ), 021306 .
Liu, S. P. ; Sui, C. X. ; Harbinson, M. ; Pudlo, M. ; Perera, H. ; Zhang, Z. Z. ; Liu, R. G. ; Ku, Z. ; Islam, M. D. ; Liu, Y. X. ; Wu, R. H. ; Zhu, Y. ; Genzer, J. ; Khan, S. A. ; Hsu, P. C. ; Ryu, J. E . A scalable microstructure photonic coating fabricated by roll-to-roll “defects” for daytime subambient passive radiative cooling . Nano Lett. , 2023 , 23 ( 17 ), 7767 – 7774 .
Aili, A. ; Wei, Z. Y. ; Chen, Y. Z. ; Zhao, D. L. ; Yang, R. G. ; Yin, X. B . Selection of polymers with functional groups for daytime radiative cooling . Mater. Today Phys. , 2019 , 10 , 100127 .
Zhang, S. ; Jing, W. L. ; Chen, Z. ; Zhang, C. Y. ; Wu, D. X. ; Gao, Y. F. ; Zhu, H. T . Full daytime sub-ambient radiative cooling film with high efficiency and low cost . Renew. Energy , 2022 , 194 , 850 – 857 .
Yang, Z. B. ; Sun, H. X. ; Xi, Y. L. ; Qi, Y. L. ; Mao, Z. P. ; Wang, P. ; Zhang, J . Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling . Sol. Energy Mater. Sol. Cells , 2021 , 227 , 111101 .
Bartoli, B. ; Catalanotti, S. ; Coluzzi, B. ; Cuomo, V. ; Silvestrini, V. ; Troise, G . Nocturnal and diurnal perfor-mances of selective radiators . Appl. Energy , 1977 , 3 ( 4 ), 267 – 286 .
Mei, X. ; Wang, T. ; Zhang, Y. ; Huang, T. Q. ; Chen, M. ; Wu, L. M . Scalable bilayer thin coatings with enhanced thermal dissipation for passive daytime radiative cooling . Chem. Eng. J. , 2024 , 495 , 153182 .
Wang, S. Q. ; Wang, Y. M. ; Zou, Y. C. ; Chen, G. L. ; Ouyang, J. H. ; Jia, D. C. ; Zhou, Y . Biologically inspired scalable-manufactured dual-layer coating with a hierarchical micropattern for highly efficient passive radiative cooling and robust superhydrophobicity . ACS Appl. Mater. Interfaces , 2021 , 13 ( 18 ), 21888 – 21897 .
Wu, J. R. ; He, J. ; Yin, K. ; Zhu, Z. ; Xiao, S. ; Wu, Z. P. ; Duan, J . Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling . Nano Lett. , 2021 , 21 ( 10 ), 4209 – 4216 .
Wang, H. D. ; Xue, C. H. ; Ji, Z. Y. ; Huang, M. C. ; Jiang, Z. H. ; Liu, B. Y. ; Deng, F. Q. ; An, Q. F. ; Guo, X. J . Superhydrophobic porous coating of polymer composite for scalable and durable daytime radiative cooling . ACS Appl. Mater. Interfaces , 2022 , 14 ( 45 ), 51307 – 51317 .
Wang, H. D. ; Xue, C. H. ; Guo, X. J. ; Liu, B. Y. ; Ji, Z. Y. ; Huang, M. C. ; Jia, S. T . Superhydrophobic porous film for daytime radiative cooling . Appl. Mater. Today , 2021 , 24 , 101100 .
Yang, X. B. ; Geng, J. L. ; Xu, R. Z. ; Tan, X. Y. ; Liu, M. ; Nie, S. J. ; Yao, S. M. ; Li, S. S. ; Zhang, J. M. ; Tu, Y. T. ; Qi, G. ; Qiao, Y. L . Self-cleaning energy-free PDMS@KL film for daytime radiative cooling . Mater. Lett. , 2023 , 350 , 134831 .
Zhang, S. Q. ; Cui, C. F. ; Zhang, F. ; Lu, J. ; Su, J. J. ; Han, J . Flexible coated textile with remarkable passive daytime radiative cooling, UV resistance and hydrophobicity performance . Prog. Org. Coat. , 2024 , 186 , 108005 .
Yao, P. C. ; Chen, Z. P. ; Liu, T. J. ; Liao, X. B. ; Yang, Z. W. ; Li, J. L. ; Jiang, Y. ; Xu, N. ; Li, W. ; Zhu, B. ; Zhu, J . Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling . Adv. Mater. , 2022 , 34 ( 51 ), e2208236 .
Liu, H. H. ; Kang, H. J. ; Jia, X. ; Qiao, X. S. ; Qin, W. ; Wu, X. H . Commercial-like self-cleaning colored ZrO 2 -based bilayer coating for remarkable daytime sub-ambient radiative cooling . Adv. Mater. Technol. , 2022 , 7 ( 10 ), 2101583 .
Zhang, Q. R. ; Xue, T. T. ; Lu, Y. ; Ma, L. ; Yu, D. Y. ; Liu, T. X. ; Fan, W . Fluorine-containing polyimide nanofiber membranes for durable and anti-aging daytime radiative cooling . J. Mater. Sci. Technol. , 2024 , 179 , 166 – 173 .
Xia, S. Y. ; Wang, F. J. ; Yang, S. S. ; Long, H. B. ; Ju, H. Q. ; Ou, J. F . Water-based Kaolin/polyacrylate cooling paint for exterior walls . Colloids Surf. A Physicochem. Eng. Aspects , 2023 , 677 , 132401 .
Li, X. ; Pattelli, L. ; Ding, Z. M. ; Chen, M. J. ; Zhao, T. ; Li, Y. ; Xu, H. B. ; Pan, L. ; Zhao, J. P . A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling . Adv. Funct. Mater. , 2024 , 34 ( 23 ), 2315315 .
Mandal, J. ; Jia, M. X. ; Overvig, A. ; Fu, Y. K. ; Che, E. ; Yu, N. F. ; Yang, Y . Porous polymers with switchable optical transmittance for optical and thermal regulation . Joule , 2019 , 3 ( 12 ), 3088 – 3099 .
Zhao, H. X. ; Sun, Q. Q. ; Zhou, J. ; Deng, X. ; Cui, J. X . Switchable cavitation in silicone coatings for energy-saving cooling and heating . Adv. Mater. , 2020 , 32 ( 29 ), 2000870 .
Ono, M. ; Chen, K. F. ; Li, W. ; Fan, S. H . Self-adaptive radiative cooling based on phase change materials . Opt. Express , 2018 , 26 ( 18 ), A777 .
Huang, J. C. ; Zhang, X. K. ; Yu, X. Y. ; Tang, G. H. ; Wang, X. Y. ; Du, M . Scalable self-adaptive radiative cooling film through VO 2 -based switchable core-shell particles . Renew. Energy , 2024 , 224 , 120208 .
Mei, X. ; Wang, T. ; Chen, M. ; Wu, L. M . A self-adaptive film for passive radiative cooling and solar heating regulation . J. Mater. Chem. A , 2022 , 10 ( 20 ), 11092 – 11100 .
Ahima, R. S . Global warming threatens human thermo-regulation and survival . J. Clin. Invest. , 2020 , 130 ( 2 ), 559 – 561 .
Tong, J. K. ; Huang, X. P. ; Boriskina, S. V. ; Loomis, J. ; Xu, Y. F. ; Chen, G . Infrared-transparent visible-opaque fabrics for wearable personal thermal management . ACS Photonics , 2015 , 2 ( 6 ), 769 – 778 .
Hsu, P. C. ; Song, A. Y. ; Catrysse, P. B. ; Liu, C. ; Peng, Y. C. ; Xie, J. ; Fan, S. H. ; Cui, Y . Radiative human body cooling by nanoporous polyethylene textile . Science , 2016 , 353 ( 6303 ), 1019 – 1023 .
Iqbal, M. I. ; Lin, K. X. ; Sun, F. X. ; Chen, S. R. ; Pan, A. Q. ; Lee, H. H. ; Kan, C. W. ; Lin, C. S. K. ; Tso, C. Y . Radiative cooling nanofabric for personal thermal management . ACS Appl. Mater. Interfaces , 2022 , 14 ( 20 ), 23577 – 23587 .
Peng, Y. C. ; Chen, J. ; Song, A. Y. ; Catrysse, P. B. ; Hsu, P. C. ; Cai, L. L. ; Liu, B. F. ; Zhu, Y. Y. ; Zhou, G. M. ; Wu, D. S. ; Lee, H. R. ; Fan, S. H. ; Cui, Y . Nanoporous polyethylene microfibres for large-scale radiative cooling fabric . Nat. Sustain. , 2018 , 1 , 105 – 112 .
Zhu, B. ; Li, W. ; Zhang, Q. ; Li, D. ; Liu, X. ; Wang, Y. X. ; Xu, N. ; Wu, Z. ; Li, J. L. ; Li, X. Q. ; Catrysse, P. B. ; Xu, W. L. ; Fan, S. H. ; Zhu, J . Subambient daytime radiative cooling textile based on nanoprocessed silk . Nat. Nanotechnol. , 2021 , 16 ( 12 ), 1342 – 1348 .
Zhong, S. J. ; Yi, L. M. ; Zhang, J. W. ; Xu, T. Q. ; Xu, L. ; Zhang, X. ; Zuo, T. ; Cai, Y . Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling . Chem. Eng. J. , 2021 , 407 , 127104 .
Zeng, S. ; Pian, S. ; Su, M. ; Wang, Z. ; Wu, M. ; Liu, X. ; Chen, M. ; Xiang, Y. ; Wu, J. ; Zhang, M. ; Cen, Q. ; Tang, Y. ; Zhou, X. ; Huang, Z. ; Wang, R. ; Tunuhe, A. ; Sun, X. ; Xia, Z. ; Tian, M. ; Chen, M. ; Ma, X. ; Yang, L. ; Zhou, J. ; Zhou, H. ; Yang, Q. ; Li, X. ; Ma, Y. ; Tao, G . Hierarchical-morphology metafabric for scalable passive daytime radiative cooling . Science , 2021 , 373 ( 6555 ), 692 – 696 .
Li, X. Q. ; Xie, W. R. ; Sui, C. X. ; Hsu, P. C . Multispectral thermal management designs for net-zero energy buildings . ACS Mater. Lett. , 2020 , 2 ( 12 ), 1624 – 1643 .
Guo, N. ; Yang, R. Y. ; Chen, M. J. ; Yan, H. J. ; Chen, W . Self-adaptive colored radiative cooling by tuning visible spectra . Sol. RRL , 2023 , 7 ( 21 ), 2300512 .
Cheng, Z. M. ; Han, H. ; Wang, F. Q. ; Yan, Y. Y. ; Shi, X. H. ; Liang, H. X. ; Zhang, X. P. ; Shuai, Y . Efficient radiative cooling coating with biomimetic human skin wrinkle structure . Nano Energy , 2021 , 89 , 106377 .
Mandal, J. ; Fu, Y. K. ; Overvig, A. C. ; Jia, M. X. ; Sun, K. R. ; Shi, N. N. ; Zhou, H. ; Xiao, X. H. ; Yu, N. F. ; Yang, Y . Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling . Science , 2018 , 362 ( 6412 ), 315 – 319 .
Wimmers, G . Wood: a construction material for tall buildings . Nat. Rev. Mater. , 2017 , 2 ( 12 ), 17051 .
Li, T. ; Zhai, Y. ; He, S. M. ; Gan, W. T. ; Wei, Z. Y. ; Heida-rinejad, M. ; Dalgo, D. ; Mi, R. Y. ; Zhao, X. P. ; Song, J. W. ; Dai, J. Q. ; Chen, C. J. ; Aili, A. ; Vellore, A. ; Martini, A. ; Yang, R. G. ; Srebric, J. ; Yin, X. B. ; Hu, L. B . A radiative cooling structural material . Science , 2019 , 364 ( 6442 ), 760 – 763 .
Li, G. W. ; Huang, J. W. ; Zhou, J. ; Zhang, Y. C. ; Zhang, C. C. ; Rao, Z. G. ; Fei, L. F . A flame-retardant wood-based composite with magnesium-aluminium layered double hydroxides for efficient daytime radiative cooling . J. Mater. Chem. A , 2024 , 12 ( 3 ), 1609 – 1616 .
Hou, C. G. ; Pang, Z. G. ; Xie, S. C. ; Yang, Z. Y. ; Wong, N. H. ; Sunarso, J. ; Peng, Y. L . Dual PVP roles for preparing PVDF hollow fiber membranes with bicontinuous stru-ctures via the complex thermally induced phase separ-ation (c-TIPS) . Sep. Purif. Technol. , 2024 , 332 , 125766 .
Zhai, Y. ; Ma, Y. G. ; David, S. N. ; Zhao, D. L. ; Lou, R. N. ; Tan, G. ; Yang, R. G. ; Yin, X. B . Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling . Science , 2017 , 355 ( 6329 ), 1062 – 1066 .
Park, C. ; Lee, W. ; Park, C. ; Park, S. ; Lee, J. ; Kim, Y. S. ; Yoo, Y . Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator . J. Energy Chem. , 2023 , 84 , 496 – 501 .
Liao, T. J. ; Xu, Q. D. ; Dai, Y. W. ; Cheng, C. ; He, Q. J. ; Ni, M . Radiative cooling-assisted thermoelectric refrig-eration and power systems: coupling properties and parametric optimization . Energy , 2022 , 242 , 122546 .
Yu, L. ; Xi, Z. Y. ; Li, S. ; Pang, D. ; Yan, H. J. ; Chen, M. J . All-day continuous electrical power generator by solar heating and radiative cooling from the sky . Appl. Energy , 2022 , 322 , 119403 .
0
浏览量
1284
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构