浏览全部资源
扫码关注微信
大连理工大学化工学院高分子材料系,大连 116024
*王海,E-mail: haiwang@dlut.edu.cn
收稿日期:2024-10-28,
录用日期:2024-12-20,
网络出版日期:2025-02-18,
纸质出版日期:2025-04-20
移动端阅览
王海. 聚四亚甲基碳酸酯和聚四甲基硫代碳酸酯的二维X射线衍射晶体结构对比研究. 高分子通报, 2025, 38(4), 659–665.
Wang, H. A comparative study of 2-dimensional X-ray diffraction crystal structures of poly(tetra-methylene carbonate) and poly(tetramethylene trithiocarbonate). Polym. Bull. (in Chinese), 2025, 38(4), 659–665.
王海. 聚四亚甲基碳酸酯和聚四甲基硫代碳酸酯的二维X射线衍射晶体结构对比研究. 高分子通报, 2025, 38(4), 659–665. DOI: 10.14028/j.cnki.1003-3726.2025.24.324.
Wang, H. A comparative study of 2-dimensional X-ray diffraction crystal structures of poly(tetra-methylene carbonate) and poly(tetramethylene trithiocarbonate). Polym. Bull. (in Chinese), 2025, 38(4), 659–665. DOI: 10.14028/j.cnki.1003-3726.2025.24.324.
以可降解的聚四亚甲基碳酸酯和聚四亚甲基三硫代碳酸酯为研究对象,通过二维X射线衍射和数据解析初步构建了二者的晶体结构。聚四亚甲基碳酸酯的晶胞参数为
a
=9.4 Å,
b
=4.4 Å,
c
=15.2 Å,
α
=80°,
β
=98°,
γ
=90°,每个晶胞含有2条反向平行的分子链,单个晶胞含有4个单体,分子链属于
P
1组群,其中的4个亚甲基呈GT-G构象。聚四亚甲基三硫代碳酸酯的
a
=8.1 Å,
b
=5.7 Å,
c
=18.4 Å,
α
=90°,
β
=85°,
γ
=105°,同样的每个晶胞含有2条反向平行的分子链,单个晶胞含有4个单体,分子链属于P1组群,不同的是聚四亚甲基三硫代碳酸酯分子链上的4个亚甲基呈现TTT构象。而分子链构象的不同可能是造成二者力学性能差异的原因之一。
This paper focused on degradable poly(tetramethylene carbonate) and poly(tetramethylene trithiocarbonate). The primary crystal structures of the two polymers were built based on 2D-X-ray diffraction and data analyses. Poly(tetramethylene carbonate) has a unit cell of
a
=9.4 Å
b
=4.4 Å
c
=15.2 Å
α
=80°
β
=98°
and
γ
=90°. There are two anti-paralleled chains packed in one unit cell that includes four monomers and with P1 space symmetry. The four methylenes in the repeat unit are in GT-G conformation. Poly(tetramethylene trithiocarbonate) has a unit cell of
a
=8.1 Å
b
=5.7 Å
c
=18.4 Å
α
=90°
β
=85°
and
γ
=105°. Similarly
there ar
e two anti-paralleled chains included in one unit cell with four monomers and P1 space symmetry. But the four methylenes of poly(tetramethylene trithiocarbonate) are in TTT conformation. The difference of chain conformation is probably one of the reasons that cause the diversity of the mechanical properties of the two polymers.
Hong, M. ; Chen, E. Y. X . Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ -butyrolactone . Nat. Chem. , 2016 , 8 ( 1 ), 42 – 49 .
Zhang, Z. ; Gowda, R. R. ; Chen, E. Y. X . Chemosynthetic P4HB: A ten-year journey from a “non-polymerizable” monomer to a high-performance biomaterial . Acc. Mater. Res. , 2024 , 5 ( 11 ), 1340 – 1352 .
Li, X. L. ; Clarke, R. W. ; Jiang, J. Y. ; Xu, T. Q. ; Chen, E. Y. X . A circular polyester platform based on simple gem-disubstituted valerolactones . Nat. Chem. , 2023 , 15 ( 2 ), 278 – 285 .
Li, X. L. ; Clarke, R. W. ; An, H. Y. ; Gowda, R. R. ; Jiang, J. Y. ; Xu, T. Q. ; Chen, E. Y. X . Dual recycling of depolymerization catalyst and biodegradable polyester that markedly outperforms polyolefins . Angew. Chem. Int. Ed. , 2023 , 62 ( 26 ), e202303791 .
Su, J. F. ; Xu, G. Q. ; Dong, B. Z. ; Yang, R. L. ; Sun, H. G. ; Wang, Q. G . Closed-loop chemical recycling of poly( ε -caprolactone) by tuning reaction parameters . Polym. Chem. , 2022 , 13 ( 41 ), 5897 – 5904 .
吕小兵 . 立构规整性二氧化碳共聚物: 从无定型到结晶性材料转变 . 高分子学报 , 2016 , 47 ( 9 ), 1166 – 1178 .
Lu, X. B. ; Ren, W. M. ; Wu, G. P . CO 2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control . Acc. Chem. Res. , 2012 , 45 ( 10 ), 1721 – 1735 .
Liu, Y. ; Ren, W. M. ; Liu, J. ; Lu, X. B . Asymmetric copolymerization of CO 2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity . Angew. chem. Int. Ed , 2013 , 52 ( 44 ), 11594 – 11598 .
Yu, Y. ; Gao, B. ; Liu, Y. ; Lu, X. B . Efficient and selective chemical recycling of CO 2 -based alicyclic polycarbonates via catalytic pyrolysis . Angew. Chem. Int. Ed , 2022 , 61 ( 34 ), e202204492 .
Fukushima, K . Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials . Biomater. Sci. , 2016 , 4 ( 1 ), 9 – 24 .
Lu, Y. ; Tu, Z. ; Cheng, Y. ; Liu, L. P. ; Leng, X. F. ; Wei, Z. Y. ; Li, Y . Kilogram-scale production of biodegradable poly(butylene carbonate): molecular weight dependence of physical properties and enhanced crystallization by nucleating agent . J. Polym. Environ. , 2023 , 31 ( 4 ), 1510 – 1524 .
Hu, H. ; Zhang, R. Y. ; Ying, W. B. ; Shi, L. ; Yao, C. K. ; Kong, Z. Y. ; Wang, K. ; Wang, J. G. ; Zhu, J . Sustainable and rapidly degradable poly(butylene carbonate- co -cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties . Polym. Chem. , 2019 , 10 ( 14 ), 1812 – 1822 .
Wu, H. L. ; Yang, J. L. ; Luo, M. ; Wang, R. Y. ; Xu, J. T. ; Du, B. Y. ; Zhang, X. H. ; Darensbourg, D. J . Poly(trimethylene monothiocarbonate) from the alternating copolymerization of COS and oxetane: a semicrystalline copolymer . Macromolecules , 2016 , 49 ( 23 ), 8863 – 8868 .
Cao, X. H. ; Yang, J. L. ; Wu, H. L. ; Wang, R. Y. ; Zhang, X. H. ; Xu, J. T . Crystallization behavior and morphology of novel aliphatic poly(monothiocarbonate)s . Polymer , 2019 , 165 , 112 – 123 .
Zhao, J. Z. ; Yue, T. J. ; Ren, B. H. ; Liu, Y. ; Ren, W. M. ; Lu, X. B . Recyclable sulfur-rich polymers with enhanced thermal, mechanical, and optical performance . Macromolecules , 2022 , 55 ( 19 ), 8651 – 8658 .
Zhao, J. Z. ; Yue, T. J. ; Ren, B. H. ; Lu, X. B. ; Ren, W. M . Closed-loop recycling of sulfur-rich polymers with tunable properties spanning thermoplastics, elastomers, and vitrimers . Nat. Commun. , 2024 , 15 ( 1 ), 3002 .
Natta, G. ; Corradini, P . Structure and properties of isotactic polypropylene . Nuovo Ciment , 1960 , 15 ( 1 ), 40 – 51 .
Hikosaka, M. ; Seto, T . The order of the molecular chains in isotactic polypropylene crystals . Polym. J. , 1973 , 5 ( 2 ), 111 – 127 .
Tashiro, K. ; Tadokoro, H. ; Kobayashi, M . Structure and piezoelectricity of poly(vinylidene fluoride) . Ferroelectrics , 1981 , 32 ( 1 ), 167 – 175 .
Tadokoro, H . Structure of Crystalline Polymers . New York : John Wiley & Sons , 1990 . 59 .
Alexander, L. E . X-ray Diffraction Methods in Polymer Science . New York : John Wiley & Sons , 1969 . 159 .
Yokouchi, M. ; Sakakibara, Y. ; Chatani, Y. ; Tadokoro, H. ; Tanaka, T. ; Yoda, K . Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation . Macromolecules , 1976 , 9 ( 2 ), 266 – 273 .
Tashiro, K. ; Yamamoto, H. ; Yoshika, T. ; Ninh, T. ; Tasaki, M. ; Shimada, S. ; Nakatani, T. ; Iwamoto, H. ; Ohta, N. ; Masunaga, H . Hierarchical structural change in the stress-induced phase transition of poly(tetramethylene terephthalate) as studied by the simultaneous measu-rement of FTIR spectra and 2D synchrotron undulator WAXD/SAXS data . Macromolecules , 2014 , 47 , 2052 – 2061 .
Ichikawa, Y. ; Kondo, H. ; Igarashi, Y. ; Noguchi, K. ; Okuyama, K. ; Washiyama, J . Crystal transition mechanisms in poly(tetramethylene succinate) . Polymer , 2000 , 414719 – 4727 .
Ichikawa, Y. ; Suzuki, J. ; Washiyama, J. ; Moteki, Y. ; Noguchi, K. ; Okuyama, K . Strain-induced crystal modification in poly(tetramethylene succinate) . Polymer , 1994 , 35 ( 15 ), 3338 – 3339 .
0
浏览量
108
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构