浏览全部资源
扫码关注微信
1.中国林业科学研究院林产化学工业研究所,生物质化学利用国家工程实验室,国家林业和草原局林产化学工程重点实验室,江苏省生物质能源与材料重点实验室,南京 210042
2.武夷学院,福建省生态产业绿色技术重点实验室,绿色化工技术福建省高等学校重点实验室,武夷山 354300
3.南京林业大学,江苏省林业资源高效加工利用协同创新中心,南京 210037
*刘鹤,E-mail: liuhe_caf@163.com
收稿日期:2024-11-21,
录用日期:2025-01-18,
网络出版日期:2025-02-26,
纸质出版日期:2025-04-20
移动端阅览
孙兴燊, 林详宇, 赵升云, 范荣玉, 杨自涛, 刘鹤, 宋湛谦. 羧甲基纤维素钠基水溶性黏结剂在锂离子电池硅电极中的应用. 高分子通报, 2025, 38(4), 676–688.
Sun, X. S.; Lin, X. Y.; Zhao, S. Y.; Fan, R. Y.; Yang, Z. T.; Liu, H.; Song, Z. Q. Performance of water-soluble binder based on carboxymethyl cellulose sodium in silicon electrode of lithium-ion battery. Polym. Bull. (in Chinese), 2025, 38(4), 676–688.
孙兴燊, 林详宇, 赵升云, 范荣玉, 杨自涛, 刘鹤, 宋湛谦. 羧甲基纤维素钠基水溶性黏结剂在锂离子电池硅电极中的应用. 高分子通报, 2025, 38(4), 676–688. DOI: 10.14028/j.cnki.1003-3726.2025.24.354.
Sun, X. S.; Lin, X. Y.; Zhao, S. Y.; Fan, R. Y.; Yang, Z. T.; Liu, H.; Song, Z. Q. Performance of water-soluble binder based on carboxymethyl cellulose sodium in silicon electrode of lithium-ion battery. Polym. Bull. (in Chinese), 2025, 38(4), 676–688. DOI: 10.14028/j.cnki.1003-3726.2025.24.354.
林业生物质资源纤维素的衍生物羧甲基纤维素钠(CMC-Na),因其环境友好、原料来源广泛、可再生等优势,在锂离子电池领域备受关注。为提升CMC-Na在锂离子电池(LIBs)硅负极的应用性能,以阴离子型多糖CMC-Na和阳离子型高聚物聚乙烯亚胺(PEI)为原料,通过简便高效的物理共混法,构筑基于阴阳离子相互作用的交联型黏结剂(C-PEI-10%)。与油溶性PVDF和纯CMC-Na对比,研究具有三维(3D)交联结构的C-PEI-10%作为锂离子电池硅负极黏结剂的
黏附强度、电池性能和电化学性能。实验表明,使用C-PEI-10%作为黏结剂的电极Si@C-PEI-10%展现出优异的剥离强度,平均剥离力为2.42 N,优于2个对比电极Si@PVDF (0.57 N)和Si@CMC-Na (1.52 N)。在0.2 C电流密度下循环100圈,电极Si@C-PEI-10%的充电比容量高达2249.1 mAh·g
−1
,容量保持率为82.54%,而电极Si@PVDF和Si@CMC-Na的充电比容量分别为166.9和1430.3 mAh·g
−1
,容量保持率分别为10.86%和58.33%。此外,电极Si@C-PEI-10%表现出优异的倍率特性和可逆性,在1 C条件下的充电比容量仍有2030.5 mAh·g
−1
,明显优于电极Si@PVDF的16.7 mAh·g
−1
和Si@CMC-Na的1477.3 mAh·g
−1
。研究表明,通过阴离子和阳离子的静电相互作用原理制备的C-PEI-10%黏结剂具有优异的黏附强度,能显著提高硅电极的电池性能和电化学稳定性。
Carboxymethyl cellulose sodium (CMC-Na)
a derivative of cellulose
has attracted considerable attention in the field of lithium-ion batteries (LIBs) because of its environmental friendliness
wide range of raw material sources
and renewability. In this study
a cross-linked binder (C-PEI-10%) based on the electrostatic interaction between the anionic polysaccharide (CMC-Na) and cationic polymer polyethyleneimine (PEI) was prepared through a simple and efficient physical blending method. Compared with PVDF and CMC-Na
the binding strength
cycle stability
and electrochemical performance of C-PEI-10% with a three-dimensional (3D) cross-linking structure as a Si electrode binder for LIBs were studied. The Si electrode using C-PEI-10% as a binder exhibits excellent peel strength
with an average peel force of 2.42 N
superior to the two comparative electrodes Si@PVDF (0.57 N) and Si@CMC-Na (1.52 N). After cycling 100 times at a current density of 0.2 C
the charging specific capacity of the Si@C-PEI-10% electrode is 2249.1 mAh·g
−1
with a capacity retention rate of 82.54%
the charging specific capacities of Si@PVDF and Si@CMC-Na electrodes are 166.9 and 1430.3 mAh·g
−1
respectively
with capacity retention rates of 10.86% and 58.33%. In addition
Si@C-PEI-10% electrode exhibits excellent rate performance and reversibility
with a charging specific capacity of 2030.5 mAh·g
−1
at 1 C
better than 16.7 mAh·g
−1
(
Si@PVDF) and 1477.3 mAh·g
−1
(Si@CMC-Na). The C-PEI-10% binder
prepared by the principle of electrostatic interaction between anions and cations
has excellent peel strength and can significantly improve the cycle performance and electrochemical stability of Si electrodes.
He, Q. ; Ning, J. Y. ; Chen, H. M. ; Jiang, Z. X. ; Wang, J. N. ; Chen, D. H. ; Zhao, C. B. ; Liu, Z. G. ; Perepichka, I. F. ; Meng, H. ; Huang, W . Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries . Chem. Soc. Rev. , 2024 , 53 ( 13 ), 7091 – 7157 .
Toki, G. F. I. ; Hossain, M. K. ; Rehman, W. U. ; Manj, R. Z. A. ; Wang, L. ; Yang, J. P . Recent progress and challenges in silicon-based anode materials for lithium-ion batteries . Ind. Chem. Mater. , 2024 , 2 ( 2 ), 226 – 269 .
康永军 , 董南希 , 王亚丽 , 刘丙学 , 田国峰 , 齐胜利 , 武德珍 , 魏甲明 , 刘君 . 聚酰亚胺作为锂离子电池硅基负极粘结剂的研究进展 . 高分子通报 , 2023 , ( 8 ), 968 – 978 .
Mery, A. ; Bernard, P. ; Valero, A. ; Alper, J. P. ; Herlin-Boime, N. ; Haon, C. ; Duclairoir, F. ; Sadki, S . A polyiso-indigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications . J. Power Sources , 2019 , 420 , 9 – 14 .
Lee, S. H. ; Lee, J. H. ; Nam, D. H. ; Cho, M. ; Kim, J. ; Chanthad, C. ; Lee, Y . Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery . ACS Appl. Mater. Interfaces , 2018 , 10 ( 19 ), 16449 – 16457 .
Sun, B. Y. ; Jiao, X. X. ; Liu, J. N. ; Qiao, R. ; Mao, C. W. ; Zhao, T. ; Zhou, S. J. ; Shi, K. Y. ; Ravivarma, M. ; Shi, J. J. ; Fan, H. ; Song, J. X . Neural network inspired binder enables fast Li-ion transport and high stress adaptation for Si anode . Nano Lett. , 2024 , 24 ( 25 ), 7662 – 7671 .
Lee, K. ; Kim, T. H . Poly(aniline-co-anthranilic acid) as an electrically conductive and mechanically stable binder for high-performance silicon anodes . Electrochim. Acta , 2018 , 283 , 260 – 268 .
Song, J. X. ; Zhou, M. J. ; Yi, R. ; Xu, T. ; Gordin, M. L. ; Tang, D. H. ; Yu, Z. X. ; Regula, M. ; Wang, D. H . Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries . Adv. Funct. Mater. , 2014 , 24 ( 37 ), 5904 – 5910 .
邓攀 , 陈程 , 张灵志 . 聚乙烯亚胺/聚丙烯酰胺复合交联型水性粘结剂在锂离子电池Si/C负极中的应用 . 高分子学报 , 2021 , 52 ( 11 ), 1473 – 1480 .
Kovalenko, I. ; Zdyrko, B. ; Magasinski, A. ; Hertzberg, B. ; Milicev, Z. ; Burtovyy, R. ; Luzinov, I. ; Yushin, G . A major constituent of brown algae for use in high-capacity Li-ion batteries . Science , 2011 , 334 ( 6052 ), 75 – 79 .
Kim, S. ; Jeong, Y. K. ; Wang, Y. ; Lee, H. ; Choi, J. W . A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon–graphite blended anodes in lithium-ion batteries . Adv. Mater. , 2018 , 30 ( 26 ), 1707594 .
Su, T. T. ; Ren, W. F. ; Wang, K. ; Yuan, J. M. ; Shao, C. Y. ; Ma, J. L. ; Chen, X. H. ; Xiao, L. P. ; Sun, R. C . Bifunctional hydrogen-bonding cross-linked polymeric binders for silicon anodes of lithium-ion batteries . Electrochim. Acta , 2022 , 402 , 139552 .
Li, P. C. ; Chen, G. ; Lin, Y. F. ; Chen, F. S. ; Chen, L. ; Zhang, N. ; Cao, Y. J. ; Ma, R. Z. ; Liu, X. H . 3D network binder via in situ cross-linking on silicon anodes with improved stability for lithium-ion batteries . Macromol. Chem. Phys. , 2020 , 221 ( 2 ), 1900414 .
李智琪 , 付玉林 , 石元昊 , 桂雪峰 , 许凯 . 壳聚糖基自交联粘结剂的合成及其在硅碳负极中的研究 . 纤维素科学与技术 , 2024 , 32 ( 2 ), 59 – 64 .
Li, Z. Q. ; Li, D. X. ; Sun, X. F. ; Xue, Y. X. ; Shi, Y. H. ; Fu, Y. L. ; Luo, C. X. ; Lin, Q. ; Gui, X. F. ; Xu, K . Ion-conductive and mechanically robust chitosan-based network binder for silicon/graphite anode . J. Energy Storage , 2024 , 93 , 112264 .
Sun, J. Y. ; Li, Y. C. ; Lv, L. Z. ; Wang, L. F. ; Xiong, W. X. ; Huang, L. ; Qu, Q. T. ; Wang, Y. ; Shen, M. ; Zheng, H. H . Selective adsorption of electrolyte anions with chitosan skin producing LiF-enriched solid electrolyte interphase for Si-based lithium-ion batteries . Adv. Funct. Mater. , 2024 , 34 ( 52 ), 2410693 .
Li, Y. ; Jin, B. Y. ; Wang, K. Y. ; Song, L. N. ; Ren, L. H. ; Hou, Y. ; Gao, X. ; Zhan, X. L. ; Zhang, Q. H . Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable SEI formation in advanced silicon-based anodes . Chem. Eng. J. , 2022 , 429 , 132235 .
Rohan, R. ; Kuo, T. C. ; Chiou, C. Y. ; Chang, Y. L. ; Li, C. C. ; Lee, J. T . Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodes via in situ cross-linking . J. Power Sources , 2018 , 396 , 459 – 466 .
Jin, B. Y. ; Wang, D. Y. ; Song, L. N. ; Cai, Y. J. ; Ali, A. ; Hou, Y. ; Chen, J. ; Zhang, Q. H. ; Zhan, X. L . Biomass-derived fluorinated corn starch emulsion as binder for silicon and silicon oxide based anodes in lithium-ion batteries . Electrochim. Acta , 2021 , 365 , 137359 .
Kwon, O. ; Kim, T. Y. ; Kim, T. ; Kang, J. ; Jang, S. ; Eom, H. ; Choi, S. ; Shin, J. ; Park, J. ; Seol, M. L. ; Han, J. W. ; Park, S. ; Lee, H. W. ; Nam, I . Intelligent stress-adaptive binder enabled by shear-thickening property for silicon electrodes of lithium-ion batteries . Adv. Energy Mater. , 2024 , 14 ( 20 ), 2304085 .
Lim, S. ; Chu, H. ; Lee, K. ; Yim, T. ; Kim, Y. J. ; Mun, J. ; Kim, T. H . Physically cross-linked polymer binder induced by reversible acid-base interaction for high-performance silicon composite anodes . ACS Appl. Mater. Interfaces , 2015 , 7 ( 42 ), 23545 – 23553 .
Wu, Z. H. ; Yang, J. Y. ; Yu, B. ; Shi, B. M. ; Zhao, C. R. ; Yu, Z. L . Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries . Rare Met. , 2019 , 38 ( 9 ), 832 – 839 .
Liang, J. H. ; Fan, Z. Q. ; Chen, S. ; Zheng, S. S. ; Wang, Z. L . A novel three-dimensional cross-linked net structure of submicron Si as high-performance anode for LIBs . J. Alloys Compd. , 2021 , 860 , 158433 .
Wang, X. X. ; Wang, K. ; Wan, Z. W. ; Weng, Y. H. ; Zheng, Z. F. ; Zhao, J. ; Li, H. ; Qian, D. ; Wu, Z. Y. ; Ling, M. ; Liang, C. D . Inorganic/organic composite binder with self-healing property for silicon anode in lithium-ion battery . Mater. Today Energy , 2024 , 43 , 101567 .
Guo, D. C. ; Liu, D. M. ; Gao, G. K. ; Tian, X. ; Zhou, J. ; Dong, L. Z. ; Li, Q. ; Chen, P. Y. ; Li, P. S. ; Lan, P. Y . Anthraquinone covalent organic framework hollow tubes as binder microadditives in Li-S batteries . Angew. Chem. Int. Ed. , 2022 , 61 ( 3 ), e202113315 .
Günter, F. J. ; Habedank, J. B. ; Schreiner, D. ; Neuwirth, T. ; Gilles, R. ; Reinhart, G . Introduction to electrochemical impedance spectroscopy as a measurement method for the wetting degree of lithium-ion cells . J. Electrochem. Soc. , 2018 , 165 ( 14 ), A3249 – A3256 .
Wan, X. ; Kang, C. ; Mu, T. S. ; Zhu, J. M. ; Zuo, P. J. ; Du, C. Y. ; Yin, G. P . A multilevel buffered binder network for high-performance silicon anodes . ACS Energy Lett. , 2022 , 7 ( 10 ), 3572 – 3580 .
Zeng, W. W. ; Wang, L. ; Peng, X. ; Liu, T. F. ; Jiang, Y. Y. ; Qin, F. ; Hu, L. ; Chu, P. K. ; Huo, K. F. ; Zhou, Y. H . Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries . Adv. Energy Mater. , 2018 , 8 ( 11 ), 1702314 .
Chae, O. B. ; Rynearson, L. ; Lucht, B. L . Distance-dependent solid electrolyte interphase control by electrochemical pretreatment . ACS Energy Lett. , 2022 , 7 ( 9 ), 3087 – 3094 .
Kim, K. ; Park, I. ; Ha, S. Y. ; Kim, Y. ; Woo, M. H. ; Jeong, M. H. ; Shin, W. C. ; Ue, M. ; Hong, S. Y. ; Choi, N. S . Understanding the thermal instability of fluoroethylene carbonate in LiPF 6 -based electrolytes for lithium ion batteries . Electrochim. Acta , 2017 , 225 , 358 – 368 .
Oyakhire, S. T. ; Gong, H. X. ; Cui, Y. ; Bao, Z. N. ; Bent, S. F . An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes . ACS Energy Lett. , 2022 , 7 ( 8 ), 2540 – 2546 .
Kim, J. M. ; Yi, R. ; Cao, X. ; Xu, Y. B. ; Engelhard, M. ; Tripathi, S. ; Wang, C. M. ; Zhang, J. G . Extending calendar life of Si-based lithium-ion batteries by a localized high concentration electrolyte . ACS Energy Lett. , 2024 , 9 ( 5 ), 2318 – 2325 .
Zhang, J. F. ; Su, Y. P. ; Zhang, Y. G . Recent advances in research on anodes for safe and efficient lithium-metal batteries . Nanoscale , 2020 , 12 ( 29 ), 15528 – 15559 .
Svirinovsky-Arbeli, A. ; Juelsholt, M. ; May, R. ; Kwon, Y. ; Marbella, L. E . Using NMR spectroscopy to link structure to function at the Li solid electrolyte interphase . Joule , 2024 , 8 ( 7 ), 1919 – 1935 .
0
浏览量
232
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构