浏览全部资源
扫码关注微信
1.浙江大学高分子科学与工程学系,高分子合成与功能构造教育部重点实验室,杭州 310027
2.中国科学技术大学核科学与技术学院,合肥 230026
3.南京大学化学化工学院高分子科学与工程系,南京 210023
4.复旦大学高分子科学系,聚合物分子工程全国重点实验室,上海 200433
5.中国科学技术大学高分子科学与工程系,合肥 230026
hanying_li@zju.edu.cn
hpsm@ustc.edu.cn
wbhu@nju.edu.cn
收稿日期:2025-02-20,
录用日期:2025-04-10,
网络出版日期:2025-07-02,
纸质出版日期:2025-08-20
移动端阅览
李寒莹, 谢康元, 陈威, 宋义虎, 沈群东, 李剑锋, 肖石燕, 何平笙, 胡文兵. 受教学启发的高分子物理思考:2024高分子物理教学经验交流会总结. 高分子通报, 2025, 38(8), 1310–1317.
Li, H. Y.; Xie, K. Y.; Chen, W.; Song, Y. H.; Shen, Q. D.; Li, J. F.; Xiao, S. Y.; He, P. S.; Hu, W. B. Teaching-stimulated thinking on polymer physics: summary of the 2024 polymer physics teaching experience exchange meeting. Polym. Bull. (in Chinese), 2025, 38(8), 1310–1317.
李寒莹, 谢康元, 陈威, 宋义虎, 沈群东, 李剑锋, 肖石燕, 何平笙, 胡文兵. 受教学启发的高分子物理思考:2024高分子物理教学经验交流会总结. 高分子通报, 2025, 38(8), 1310–1317. DOI: 10.14028/j.cnki.1003-3726.2025.25.057.
Li, H. Y.; Xie, K. Y.; Chen, W.; Song, Y. H.; Shen, Q. D.; Li, J. F.; Xiao, S. Y.; He, P. S.; Hu, W. B. Teaching-stimulated thinking on polymer physics: summary of the 2024 polymer physics teaching experience exchange meeting. Polym. Bull. (in Chinese), 2025, 38(8), 1310–1317. DOI: 10.14028/j.cnki.1003-3726.2025.25.057.
《高分子物理》课程建设的主要动力源于任课教师在该主干课程教学活动中的思考,其思考范围通常不仅局限于教学内容与方法的更新迭代,还涉及教学对科研思路和方向的启发。为了鼓励教师的教学思考,分享并相互激发创新思路,长三角研究型大学联盟高分子专业委员会发起了“2024高分子物理教学经验交流会”。来自联盟5所高校的《高分子物理》任课教师分享交流了在高分子结晶、高分子网络、橡胶弹性理论、高分子光学与电学性能、高分子缠结、高分子凝聚态理论等方面的思考。
The impetus for developing the
Polymer Physics
course stems from the instructors’ pedagogical thinking arising from their teaching experiences. This thinking extends beyond simply updating course content and methods to include the impact of teaching on research approaches and directions. To foster the sharing of innovative ideas and encourage further thinking
the “Polymer Committee of the Alliance of Research Universities in Yangtze River Delta held the 2024 Polymer Physics Teaching Experience Exchange Meeting”. Faculty from five participating universities presented their insights on diverse aspects of Polymer Physics
including crystallization
network structures
rheology
optical and electrical properties
entanglement
and condensed matter theory.
何平笙 . 新编高聚物的结构与性能 , 第2版 . 北京 : 科学出版社 , 2021 .
黄昆 . 固体物理学 , 第2版 . 北京 : 北京大学出版社 , 2014 .
Blundell, D. J. ; Keller, A. ; Kovacs, A. J . A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution . J. Polym. Sci. Part B Polym. Lett. , 1966 , 4 ( 7 ), 481 – 486 .
Chen, M. ; Ong, W. L. ; Peng, B. Y. ; Guo, X. Y. ; Ren, J. ; Zhu, Y. ; Li, H. Y . Enabling polymer single crystals to be high-performance dielectric . Angew. Chem. Int. Ed. , 2024 , 63 ( 7 ), e202314685 .
Kuhn, W . Beziehungen zwischen Molekülgröße, statis-tischer Molekülgestalt und elastischen Eigenschaften hochpolymerer Stoffe . Kolloid-Zeitschrift , 1936 , 76 ( 3 ), 258 – 271 .
James, H. M. ; Guth, E . Theory of the elastic properties of rubber . J. Chem. Phys. , 1943 , 11 ( 10 ), 455 – 481 .
Rubinstein, M. ; Panyukov, S . Elasticity of polymer networks . Macromolecules , 2002 , 35 ( 17 ), 6670 – 6686 .
Zhong, M. J. ; Wang, R. ; Kawamoto, K. ; Olsen, B. D. ; Johnson, J. A . Quantifying the impact of molecular defects on polymer network elasticity . Science , 2016 , 353 ( 6305 ), 1264 – 1268 .
Pearson, K . The problem of the random walk . Nature , 1905 , 72 ( 1865 ), 294 .
Lord Rayleigh, O. M. F. R. S . XXXI. On the problem of random vibrations, and of random flights in one, two, or three dimensions . Lond. Edinb. Dublin Philos. Mag. J. Sci. , 1919 , 37 ( 220 ), 321 – 347 .
Morovati, V. ; Dargazany, R . Improved approximations of non-Gaussian probability, force, and energy of a single polymer chain . Phys. Rev. E , 2019 , 99 ( 5-1 ), 052502 .
Kuhn, W. ; Grün, F . Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe . Kolloid-Zeitschrift , 1942 , 101 ( 3 ), 248 – 271 .
Guo, Q. ; Zaïri, F . A micromechanics-based model for deformation-induced damage and failure in elastomeric media . Int. J. Plast. , 2021 , 140 , 102976 .
Wang, M. C. ; Guth, E . Statistical theory of networks of non-Gaussian flexible chains . J. Chem. Phys. , 1952 , 20 ( 7 ), 1144 – 1157 .
Klüppel, M. ; Schramm, J . A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems . Macromol. Theory Simul. , 2000 , 9 ( 9 ), 742 – 754 .
Langley, N. R . Elastically effective strand density in polymer networks . Macromolecules , 1968 , 1 ( 4 ), 348 – 352 .
Hou, F. Y. ; Xia, Z. J. ; Song, Y. H. ; Chen, W. ; Zheng, Q . Strain softening of bimodal isoprene rubber vulcanizates . Macromol. Mater. Eng. , 2021 , 306 ( 5 ), 2000802 .
Diani, J. ; Fayolle, B. ; Gilormini, P . A review on the mullins effect . Eur. Polym. J. , 2009 , 45 ( 3 ), 601 – 612 .
Ricker, A. ; Kröger, N. H. ; Wriggers, P . Comparison of discontinuous damage models of mullins-type . Arch. Appl. Mech. , 2021 , 91 ( 10 ), 4097 – 4119 .
Srikanth, K. ; Sreejith, P. ; Arvind, K. ; Kannan, K. ; Pandey, M . An efficient mode-of-deformation dependent rate-type constitutive relation for multi-modal cyclic loading of elastomers . Int. J. Plast. , 2023 , 163 , 103517 .
Zhan, L. ; Qu, S. X. ; Xiao, R . A review on the mullins effect in tough elastomers and gels . Acta Mech. Solida Sin. , 2024 , 37 ( 2 ), 181 – 214 .
Denora, I. ; Marano, C . Stretch-induced softening in filled elastomers: a review on Mullins effect related anisotropy and thermally induced recovery . Polym. Test. , 2024 , 133 , 108399 .
Dang, Z. M . Dielectric Polymer Materials for High-density Energy Storage . Cambridge : William Andrew , 2018 .
Chen, X. ; Pan, S. ; Feng, P. J. ; Bian, H. F. ; Han, X. ; Liu, J. H. ; Guo, X. ; Chen, D. Z. ; Ge, H. X. ; Shen, Q. D . Bioinspired ferroelectric polymer arrays as photodetectors with signal transmissible to neuron cells . Adv. Mater. , 2016 , 28 ( 48 ), 10684 – 10691 .
Chen, Y. X. ; Feng, P. J. ; Zhong, G. J. ; Liu, J. H. ; Jiang, B. B. ; Harn, Y. W. ; Zhao, D. ; Lin, Z. Q. ; Zhang, Q. M. ; Shen, Q. D . Piezoelectric nanogenerators enabled neuromodulation rescued dopaminergic neuron loss in Parkinson's disease . Nano Energy , 2024 , 121 , 109187 .
Edwards, S. F . Statistical mechanics with topological constraints: I . Proc. Phys. Soc. , 1967 , 91 ( 3 ), 513 .
Gong, H. ; Li, J. F. ; Zhang, H. D. ; Shi, A. C . Force-extension curve of an entangled polymer chain: a superspace approach . Chinese J. Polym. Sci. , 2021 , 39 ( 11 ), 1345 – 1350 .
胡文兵 , 沈祥建 , 高飞雪 . 软物质非平衡体系的挑战和机遇 . 高分子学报 , 2023 , ( 1 ), 65 – 77 .
Roland, C. M . Characteristic relaxation times and their invariance to thermodynamic conditions . Soft Matter , 2008 , 4 ( 12 ), 2316 .
Guilbaud, S. ; Salomé, L. ; Destainville, N. ; Manghi, M. ; Tardin, C . Dependence of DNA persistence length on ionic strength and ion type . Phys. Rev. Lett. , 2019 , 122 ( 2 ), 028102 .
Whitelam, S. ; Jack, R. L . The statistical mechanics of dynamic pathways to self-assembly . Annu. Rev. Phys. Chem. , 2015 , 66 , 143 – 163 .
Zhu, G. L. ; Huang, Z. H. ; Xu, Z. Y. ; Yan, L. T . Tailoring interfacial nanoparticle organization through entropy . Acc. Chem. Res. , 2018 , 51 ( 4 ), 900 – 909 .
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构