浏览全部资源
扫码关注微信
1.中国科学院化学研究所,极端环境高分子材料重点实验室,北京 100190
2.中国科学院大学,北京 100049
yeli@iccas.ac.cn
收稿日期:2025-02-27,
录用日期:2025-03-29,
网络出版日期:2025-05-22,
纸质出版日期:2025-07-20
移动端阅览
邢叔文, 弓伟露, 叶丽, 崔海峰, 赵彤. 溶胶-凝胶法制备高熵二硼化物陶瓷粉体及其裂解行为研究. 高分子通报, 2025, 38(7), 1124–1132.
Xing S. W.; Gong W. L.; Ye L.; Cui H. F.; Zhao T. Preparation of high-entropy diboride ceramic powders by sol-gel method and their pyrolysis behavior. Polym. Bull. (in Chinese), 2025, 38(7), 1124–1132.
邢叔文, 弓伟露, 叶丽, 崔海峰, 赵彤. 溶胶-凝胶法制备高熵二硼化物陶瓷粉体及其裂解行为研究. 高分子通报, 2025, 38(7), 1124–1132. DOI: 10.14028/j.cnki.1003-3726.2025.25.066.
Xing S. W.; Gong W. L.; Ye L.; Cui H. F.; Zhao T. Preparation of high-entropy diboride ceramic powders by sol-gel method and their pyrolysis behavior. Polym. Bull. (in Chinese), 2025, 38(7), 1124–1132. DOI: 10.14028/j.cnki.1003-3726.2025.25.066.
以山梨糖醇为碳源、硼酸为硼源、金属配位共聚物(PNME)为金属源,采用溶胶-凝胶法制备出高熵二硼化物陶瓷前驱体,随后经固化和高温裂解得到元素分布均匀的(Ti
Zr
Hf
Nb
Ta)B
2
高熵二硼化物陶瓷粉体。为深入探究所得高熵二硼化物陶瓷前驱体的裂解行为,对前驱体在600~1900 ℃范围内热解产物的晶相组成进行了表征,并结合热力学理论计算推导出裂解反应的顺序,从而验证实验结果。实验结果显示,在前驱体裂解过程中,碳热还原反应与硼碳热还原反应同时发生,二者互为竞争反应;随着温度升高,硼碳热还原反应占据优势,所以产物中的碳化物最终转化为二硼化物,并通过固溶反应转变为单相高熵二硼化物。本研究不仅为高熵二硼化物陶瓷粉体的制备提供了新方法,而且为深入探究其裂解行为及机理提供了理论依据,对高性能陶瓷材料的应用与优化具有重要的参考价值。
In this study
high-entropy diboride ceramic precursor was prepared by sol-gel method using sorbitol as the carbon source
boric acid as the boron source and coordinated-metal copolymer (PNME) as the metal source. Subsequently
high-entropy diboride ceramic powders (Ti
Zr
Hf
Nb
Ta)B
2
with uniform elemental distributions were obtained by curing and high-temperature pyrolysis. To further investigate the pyrolysis behavior of the obtained high-entropy diboride ceramic precursors
the crystalline phase compositions of the pyrolysis products obtained at 600 ℃ to 1900 ℃ were characterized
and the sequence of the pyrolysis reactions was deduced by combining with theoretical calculations of the thermodynamics theory to validate the experimental results. The results showed that during the pyrolysis process of precursors
both carbothermal reduction and boron-carbothermal reduction reactions occurred and competed with each other. With the temperature increased
the boron-carbothermal reduction reaction became dominant. Consequently
the carbides in the product were ultimately transformed into diborides and further converted into a single-phase high-entropy diboride through solid solution reaction. This study not only provides a new method for the preparation of high-entropy diborid
e ceramic powders but also offers theoretical insights into the pyrolysis behavior and mechanisms of high-entropy diboride ceramic precursors
which holds significant reference value for the application and optimization of high-performance ceramic materials.
顾俊峰 , 邹冀 , 张帆 , 季伟 , 王皓 , 王为民 , 傅正义 . 高熵陶瓷材料研究进展 . 中国材料进展 , 2019 , 38 ( 9 ), 855 – 865 .
Hsu, W. L. ; Tsai, C. W. ; Yeh, A. C. ; Yeh, J. W . Clarifying the four core effects of high-entropy materials . Nat. Rev. Chem. , 2024 , 8 ( 6 ), 471 – 485 .
徐世南 , 赵善举 , 徐立友 . 高熵陶瓷材料研究进展与应用现状 . 空天技术 , 2024 , ( 6 ), 9 – 26 .
Dube, T. C. ; Zhang, J . Underpinning the relationship between synthesis and properties of high entropy ceramics: a comprehensive review on borides, carbides and oxides . J. Eur. Ceram. Soc. , 2024 , 44 ( 3 ), 1335 – 1350 .
Gu, J. F. ; Fu, S. ; Ping, H. ; Ji, W. ; Zou, J. ; Wang, H. ; Wang, W. M. ; Zhang, F. ; Liu, H. X. ; Fu, Z. Y . Idea of macro-scale and micro-scale prestressed ceramics . Interdiscip. Mater. , 2024 , 3 ( 6 ), 897 – 906 .
赵鹏博 , 张岩 , 朱锦鹏 , 许亮 , 周宇章 , 郭伟明 , 张国军 , 王海龙 , 林华泰 . 高熵硼化物陶瓷的研究进展 . 硅酸盐学报 , 2022 , 50 ( 6 ), 1512 – 1526 .
Gild, J. ; Zhang, Y. Y. ; Harrington, T. ; Jiang, S. C. ; Hu, T. ; Quinn, M. C. ; Mellor, W. M. ; Zhou, N. X. ; Vecchio, K. ; Luo, J . High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics . Sci. Rep. , 2016 , 6 , 37946 .
Gong, W. ; Wang, T. ; Luo, W. ; Du, Y. ; Ye, L. ; Song, R. ; Cui, H. ; Zhao, T. ; Yang, W. ; Dai, Z. ; Hong, Y . Synthesis and characterization of high-purity, high-entropy diboride ceramic powders by a liquid phase method . Materials (Basel) , 2023 , 16 ( 23 ), 7431 .
Akrami, S. ; Edalati, P. ; Fuji, M. ; Edalati, K . High-entropy ceramics: review of principles, production and applications . Mater. Sci. Eng. R Rep. , 2021 , 146 , 100644 .
Feng, L. ; Monteverde, F. ; Fahrenholtz, W. G. ; Hilmas, G. E . Superhard high-entropy AlB 2 -type diboride ceramics . Scr. Mater. , 2021 , 199 , 113855 .
Qureshi, T. ; Khan, M. M. ; Pali, H. S . Review: high-entropy borides: challenges and opportunities . J. Mater. Sci. , 2024 , 59 ( 34 ), 15921 – 15991 .
邱文丰 , 叶丽 , 韩伟健 , 赵彤 . 超高温陶瓷前驱体合成研究进展 . 中国材料进展 , 2015 , 34 ( 10 ), 751 – 761 .
Yang, Y. ; Bi, J. Q. ; Sun, K. N. ; Qiao, L. J. ; Liang, G. D. ; Wang, H. Y. ; Yuan, J. L. ; Chen, Y. G . The effect of chemical element on hardness in high-entropy transition metal diboride ceramics . J. Eur. Ceram. Soc. , 2023 , 43 ( 14 ), 5774 – 5781 .
Wang, Y. P. ; Gan, G. Y. ; Wang, W. ; Yang, Y. ; Tang, B. Y . Ab initio prediction of mechanical and electronic properties of ultrahigh temperature high-entropy ceramics (Hf 0.2 Zr 0.2 Ta 0.2 M 0.2 Ti 0.2 )B 2 (M = Nb, Mo, Cr) . Phys. Status Solidi B: . , 2018 , 255 ( 8 ), 1800011 .
Sun, Y. N. ; Ye, L. ; Zhang, Y. Q. ; Chen, F. H. ; Han, W. J. ; Qiu, W. F. ; Zhao, T . Synthesis of high entropy carbide ceramics via polymer precursor route . Ceram. Int. , 2022 , 48 ( 11 ), 15939 – 15945 .
Venugopal, S. ; Boakye, E. E. ; Paul, A. ; Keller, K. ; Mogilevsky, P. ; Vaidhyanathan, B. ; Binner, J. G. P. ; Katz, A. ; Brown, P. M . Sol-gel synthesis and formation mechanism of ultrahigh temperature ceramic: HfB 2 . J. Am. Ceram. Soc. , 2014 , 97 ( 1 ), 92 – 99 .
陈辉 , 杜世萱 , 高鸿钧 . 石墨烯纳米结构的原子级精准构造 . 物理 , 2021 , 50 ( 5 ), 325 – 335 .
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构