浏览全部资源
扫码关注微信
上海交通大学材料科学与工程学院,金属基复合材料国家重点实验室,上海 200240
黄晚秋,2020年4月在窦红静教授的指导下毕业于上海交通大学材料科学与工程学院,获得硕士学位,主要研究领域为光热纳米材料的制备及生物应用研究;
* 窦红静,女,博士,上海交通大学材料科学与工程学院教授,博导,入选上海市东方学者(2017)、上海市曙光学者(2017)、欧盟玛丽居里学者(2015~2017)、教育部新世纪优秀人才计划(2013),从事大分子多层级组装及生物应用的相关研究。在Nat Commun, ACS Nano, Angew Chem Int Ed 等期刊共发表SCI论文65篇,作为第一发明人申报国家发明专利12项、PCT专利2项,担任Chinese Journal of Engineering 编委、法国Lille基金 I-SITE-ULNE特邀外审专家、Materials Horizons, Acta Biomaterialia,Nanoscale, Nanotheronostics 等十余种国际知名期刊的审稿专家。研究工作被他引900余次,成果作为研究亮点被Explore Bristol Research,Advances in Engineering 等媒体报道。在自组装生物材料方面,应邀为Chinese Journal of Polymer Science“超分子材料”专刊、Polymer International、《高分子学报》等学术期刊撰写综述或研究论文。主要从事大分子生物功能材料及超分子自组装的研究。E-mail:hjdou@sjtu.edu.cn.
纸质出版日期:2020-10-20,
收稿日期:2019-09-02,
修回日期:2020-05-25,
扫 描 看 全 文
黄晚秋, 高苗苗, 徐源, 窦红静. 多糖纳米载体的自组装制备途径及生物应用[J]. 高分子通报, 2020,33(10):21-29.
Wan-qiu HUANG, Miao-miao GAO, Yuan XU, Hong-jing DOU. Self-Assembly Approach and Biological Application of Polysaccharide Nanocarrier[J]. Polymer Bulletin, 2020,33(10):21-29.
黄晚秋, 高苗苗, 徐源, 窦红静. 多糖纳米载体的自组装制备途径及生物应用[J]. 高分子通报, 2020,33(10):21-29. DOI: 10.14028/j.cnki.1003-3726.2020.10.003.
Wan-qiu HUANG, Miao-miao GAO, Yuan XU, Hong-jing DOU. Self-Assembly Approach and Biological Application of Polysaccharide Nanocarrier[J]. Polymer Bulletin, 2020,33(10):21-29. DOI: 10.14028/j.cnki.1003-3726.2020.10.003.
纳米载体由于增强渗透阻滞(EPR)效应可以高效富集于肿瘤部位
有利于增强药物体内循环时间和增强药物稳定性
从而成为增强肿瘤治疗和诊断效果的有力手段。作为一种天然来源的生物大分子
多糖具有良好的生物相容性和生物功能性
可以实现主动靶向
如透明质酸具有特异性靶向到CD44受体的功能。因此由多糖制备的纳米载体是抗肿瘤药物包封和靶向控释的优异候选材料之一。目前葡聚糖、壳聚糖、透明质酸及海藻酸盐等多种多糖已成功用于多糖纳米载体的制备及相关生物医学应用。在包括乳化、自组装等制备多糖纳米载体的不同方法中
自组装途径由于其适用范围广、所得载体性能可控
已成为多糖纳米载体制备的主要方式。多糖纳米载体的自组装途径主要包括聚电解质吸附自组装、基于多糖聚合物的两步法自组装、以及聚合/自组装联合的一步法途径。目前来说
制备多糖纳米载体多通过先进行多糖改性或多糖共聚物合成、进而由不同的驱动力诱导多糖共聚物自组装这两步骤完成。但总体上
较为复杂的多糖改性方法、以及多糖溶液自组装中较低的固含量都造成两步法制备多糖纳米载体时效率较低
难以满足实际应用的需求。近年来
包括我们在内的一些研究组提出通过“聚合-自组装”二合一的途径实施多糖纳米载体的“一步法”制备。即从多糖出发
在单体于多糖主链上的接枝共聚过程中
驱动共聚物的溶液相自组装
从而一步制得多糖基纳米载体。在“一步法”途径中
纳米载体的制备效率得以显著提升
并可通过引入适当的功能性单体赋予纳米载体以特定的功能性。这一途径为多糖纳米载体的制备提供了新的思路。本文主要从多糖纳米载体制备的自组装途径出发
分类介绍了由不同自组装驱动力制备多糖纳米载体的方法
在对“两步法”制备多糖纳米载体的驱动力进行归纳的基础上
着重介绍接枝共聚诱导自组装的“一步法”途径。此外
基于多糖本身特殊的生物功能性
如细胞识别等特点
本文还介绍了多糖纳米载体的主动靶向药物输运等生物应用
以期能为高效制备具有生物功能性的多糖纳米载体提供借鉴。
Nano carriers
due to the enhanced osmotic blockade (EPR) effect
can highly enrich in the tumor site
which is conducive to enhancing the internal circulation time and drug stability
and thus become a powerful means to enhance the therapeutic and diagnostic effect of tumor. As a natural biological macromolecule
polysaccharide has good biocompatibility and biological function
which can achieve active targeting. For example
hyaluronic acid has the function of specific targeting to CD44 receptor. Therefore
the nano carrier prepared from polysaccharide is one of the excellent candidate materials for anticancer drug encapsulation and targeted controlled release. At present
dextran
chitosan
hyaluronic acid
alginate and other polysaccharides have been successfully used in the preparation of polysaccharide nano carriers and related biomedical applications. Among the different methods of preparing polysaccharide nano carriers
including emulsification and self-assembly
self-assembly has become the main way of preparing polysaccharide nano carriers because of its wide application and controllable performance. The self-assembly of polysaccharide nano carriers mainly includes polyelectrolyte adsorption self-assembly
two-step self-assembly based on polysaccharide polymer
and onestep polymerization/self-assembly. At present
the preparation of polysaccharide nano carriers is mainly through two steps: first
the modification of polysaccharide or the synthesis of polysaccharide copolymers
and then the self-assembly of polysaccharide copolymers induced by different driving forces. However
the complex modification methods of polysaccharides and the low solid content in the self-assembly of polysaccharide solution result in the low aging rate of the two-step preparation of polysaccharide nano carriers
which is difficult to meet the needs of practical application. In recent years
some research groups including us have proposed the "one-step "preparation of polysaccharide nano carriers by the" polymerization self-assembly" two in one way. From the point of view of polysaccharides
in the process of grafting copolymerization of monomers on the main chain of polysaccharides
the solution phase self-assembly of the copolymers is driven
and then the nano carrier of polysaccharide group is prepared in one step. In the "one-step" approach
the preparation efficiency of nano carriers can be significantly improved
and the nano carriers can be given specific functionality by introducing appropriate functional monomers. This approach provides a new way for the preparation of polysaccharide nano carriers. In this paper
the self-assembly methods for the preparation of polysaccharide nano carriers are introduced. Based on the induction of the driving force for the preparation of polysaccharide nano carriers by "two-step" method
the " one-step" method for the self-assembly induced by graft copolymerization is emphasized. In addition
based on the special biological functions of polysaccharides
such as cell recognition
this paper also introduces the active target drug transport and other biological applications of polysaccharide nano carriers
in order to provide reference for the efficient preparation of polysaccharide nano carriers with biological functions.
多糖纳米载体自组装途径两步法一步法主动靶向
Polysaccharide nanocarrierSelf-assembly approachTwo-step methodOne-step methodActive targeting
0
浏览量
15
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构