浏览全部资源
扫码关注微信
青岛科技大学 橡塑材料与工程教育部重点实验室,青岛 266042
*段咏欣,E-mail: dyx@qust.edu.cn
纸质出版日期:2024-01-20,
收稿日期:2023-03-01,
录用日期:2023-04-21
扫 描 看 全 文
梁帅, 刘克, 杨帆, 胡洁, 段咏欣. 石墨烯/纤维素杂化材料的制备及应用. 高分子通报, 2024, 37(1), 52–72
Liang, S.; Liu, K.; Yang, F.; Hu, J.; Duan, Y. X. Preparation and application of graphene/cellulose hybrid materials. Polym. Bull. (in Chinese), 2024, 37(1), 52–72
梁帅, 刘克, 杨帆, 胡洁, 段咏欣. 石墨烯/纤维素杂化材料的制备及应用. 高分子通报, 2024, 37(1), 52–72 DOI: 10.14028/j.cnki.1003-3726.2024.23.075.
Liang, S.; Liu, K.; Yang, F.; Hu, J.; Duan, Y. X. Preparation and application of graphene/cellulose hybrid materials. Polym. Bull. (in Chinese), 2024, 37(1), 52–72 DOI: 10.14028/j.cnki.1003-3726.2024.23.075.
杂化材料是由两种或两种以上的组分在纳米或分子级别形成的具有新的功能或性能增强的多组分材料。基于二者的结构特点及存在的相互作用,石墨烯与纳米级纤维素可以杂化,形成具有优异性能的石墨烯/纤维素杂化材料。石墨烯/纤维素杂化材料兼具两组分的优点,如高比表面积、优良的导电性、热稳定性等,也可产生新的功能,如各向异性的导电、导热特性,与其他材料复合时更为优良的分散性等。基于其特性,石墨烯/纤维素杂化材料在能量存储、水处理及传感等领域具有巨大的应用潜力。本文对石墨烯/纤维素杂化材料的制备方法、杂化作用机理(氢键、静电作用及疏水相互作用等)及应用领域进行了介绍,并对石墨烯/纤维素杂化材料未来的发展方向进行了展望。
Hybrid materials are formed by combination of two or more components at least one dimension on the nanometer scale of molecular scale. Hybrid materials have new functionalities or superior properties to the components. Graphene and nanocellulose can be hybridized to form graphene/cellulose hybrid materials with outstanding properties. Graphene/cellulose hybrid materials can combine the advantages of both components
such as high specific surface area
excellent conductivities
and thermal stabilities
which also exhibit new properties
such as anisotropic electrical and thermal conductivities
and improved dispersion when combined with other materials. Given these attributes
graphene/cellulose hybrid materials hold significant potential in various fields
such as energy storage
water treatment
and sensing applications. This review provides an introduction to the preparation methods of graphene/cellulose hybrid materials
the mechanisms of hybridization (hydrogen bonding
electrostatic interactions and hydrophobic interactions)
and discusses the future prospects of graphene/cellulose hybrid materials.
石墨烯纤维素杂化材料
GrapheneCelluloseHybrid materials
Afshari, R.; Shaabani, A. Materials functionalization with multicomponent reactions: state of the art. ACS Comb. Sci., 2018, 20(9), 499–528.
Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of organic-inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv. Funct. Mater., 2018, 28(27), 1704158.
Kickelbick, G. Hybrid materials—past, present and future. Hybrid Mater., 2014, 1(1), 39–51.
Fahmi, A.; Pietsch, T.; Mendoza, C.; Cheval, N. Functional hybrid materials. Mater. Today, 2009, 12(5), 44–50.
Wang, K.; Ma, Q. Y.; Pang, K.; Ding, B. B.; Zhang, J. M.; Duan, Y. X. One-pot synthesis of graphene/chitin nanofibers hybrids and their remarkable reinforcement on poly(vinyl alcohol). Carbohydr. Polym., 2018, 194, 146–153.
Ahmed, A.; Adak, B.; Bansala, T.; Mukhopadhyay, S. Green solvent processed cellulose/graphene oxide nanocomposite films with superior mechanical, thermal, and ultraviolet shielding properties. ACS Appl. Mater. Interfaces, 2020, 12(1), 1687–1697.
Peng, Y. W.; Zhao, M. T.; Chen, B.; Zhang, Z. C.; Huang, Y.; Dai, F. N.; Lai, Z. C.; Cui, X. Y.; Tan, C. L.; Zhang, H. Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv. Mater., 2018, 30(3), 1705454.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666–669.
Bellani, S.; Petroni, E.; Del Rio Castillo, A. E.; Curreli, N.; Martín-García, B.; Oropesa-Nuñez, R.; Prato, M.; Bonaccorso, F. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater., 2019, 29(14), 1807659.
Zhang, M. H.; Wang, H. T.; Su, Z. W.; Tian, C.; Zhang, J. T.; Wang, Y.; Yan, F.; Mai, Z. H.; Xing, G. Z. Enhanced thermal conductivity and lower density composites with brick-wall microstructure based on highly oriented graphite nanoplatelet: towards manufacturable cooling substrates for high power density electronic devices. Nanotechnology, 2019, 30(24), 245204.
Seyller, T.; Bostwick, A.; Emtsev, K. V.; Horn, K.; Ley, L.; McChesney, J. L.; Ohta, T.; Riley, J. D.; Rotenberg, E.; Speck, F. Epitaxial graphene: a new material. Phys. Stat. Sol. (B), 2008, 245(7), 1436–1446.
Lu, H.; Liu, W. J.; Wang, H. L.; Liu, X.; Zhang, Y. Q.; Yang, D. R.; Pi, X. D. Molecular beam epitaxy growth and scanning tunneling microscopy study of 2D layered materials on epitaxial graphene/silicon carbide. Nanotechnology, 2023, 34(13), 132001.
Vlassiouk, I.; Fulvio, P.; Meyer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon, 2013, 54, 58–67.
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932), 1312–1314.
Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res., 2018, 51(7), 1609–1620.
Antonatos, N.; Ghodrati, H.; Sofer, Z. Elements beyond graphene: current state and perspectives of elemental monolayer deposition by bottom-up approach. Appl. Mater. Today, 2020, 18, 100502.
Yu, P. X.; Wang, X.; Zhang, K. M.; Zhou, D. J.; Wu, M. Y.; Wu, Q. Y.; Liu, J. Y.; Yang, J. J.; Zhang, J. N. Aqueous cellulose solution assisted direct exfoliation of graphite to high concentration graphene dispersion. Mater. Lett., 2021, 285, 129081.
Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev., 2014, 43(1), 381–398.
Poorali, M. S.; Bagheri-Mohagheghi, M. M. Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap. J. Mater. Sci., 2016, 27(1), 260–271.
Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4), 217–224.
Yang, Y. C.; Hou, H. S.; Zou, G. Q.; Shi, W.; Shuai, H. L.; Li, J. Y.; Ji, X. B. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019, 11(1), 16–33.
吕俊毅, 李亚格, 蔡伟杰, 李韬, 许晴, 张海军. 剥离法制备石墨烯的研究进展. 耐火材料, 2022, (56), 1–10.
Abergel, D. S. L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys., 2010, 59(4), 261–482.
Zhuang, Y. F.; Zheng, K.; Cao, X. Y.; Fan, Q. R.; Ye, G.; Lu, J. X.; Zhang, J. N.; Ma, Y. M. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano, 2020, 14(9), 11733–11742.
Gangopadhyay, R.; De, A. Conducting polymer nanocomposites: a brief overview. Chem. Mater., 2000, 12(3), 608–622.
Shahil, K. M. F.; Balandin, A. A. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun., 2012, 152(15), 1331–1340.
Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater., 2011, 10(8), 569–581.
Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci., 2017, 90, 75–127.
Yang, J.; Zhou, Y. Z.; Sun, L.; Zhao, N.; Zang, C. L.; Cheng, X. N. Synthesis, characterization and optical property of graphene oxide films. Appl. Surf. Sci., 2012, 258(12), 5056–5060.
Kumar, S.; Koh, J. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite. Int. J. Biol. Macromol., 2014, 70, 559–564.
王自枭, 刘彦君, 郭超, 周超, 周淑艳, 袁源. 石墨烯原位物理剥离法分析及其应用展望. 信息记录材料, 2022, 23(9), 1–4.
Wang, Y.; Li, S. S.; Yang, H. Y.; Luo, J. E. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv., 2020, 10(26), 15328–15345.
Feng, L. Y.; Wu, L.; Qu, X. G. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater., 2013, 25(2), 168–186.
Teng, C.; Xie, D.; Wang, J. F.; Yang, Z.; Ren, G. Y.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater., 2017, 27(20), 1700240.
Jimenez-Cervantes, E.; López-Barroso, J.; Martínez-Hernández, A. L.; Velasco-Santos, C. Graphene-based materials functionalization with natural polymeric biomolecules. Nayak, P. K., Ed. Recent Advances in Graphene Research. Rijeka: InTech, 2016
Mokhena, T. C.; John, M. J. Cellulose nanomaterials: new generation materials for solving global issues. Cellulose, 2020, 27(3), 1149–1194.
Tarchoun, A. F.; Trache, D.; Klapötke, T. M. Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int. J. Biol. Macromol., 2019, 138, 837–845.
赵冬梅, 初小宇, 魏丽娜, 贾连莹, 郑秀君. 纳米纤维素在食品包装材料中的应用研究进展. 高分子通报, 2021, (11), 11–20.
殷晓春, 思广慧, 师玉卓, 王新华, 顾永娥, 孟军亮, 张娜娣. 纳米纤维素的改性及其吸附重金属离子的应用研究. 高分子通报, 2019, (11), 15–25.
朱晓东, 杜昀怡, 原续波, 赵瑾, 侯信. 细菌纤维素的最新研究进展. 高分子通报, 2022, (5), 17–26.
于靖, 孙莺, 王鹏, 陈鹏, 张永刚. 细菌纤维素纳米纤维的改性及其复合材料研究进展. 高分子通报, 2019, (5), 1–8.
Rajala, S.; Siponkoski, T.; Sarlin, E.; Mettänen, M.; Vuoriluoto, M.; Pammo, A.; Juuti, J.; Rojas, O. J.; Franssila, S.; Tuukkanen, S. Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces, 2016, 8(24), 15607–15614.
Wang, J.; Tavakoli, J.; Tang, Y. H. Bacterial cellulose production, properties and applications with different culture methods—a review. Carbohydr. Polym., 2019, 219, 63–76.
Liu, Y. X.; Zhou, L. J.; Wang, L.; Pan, X. L.; Wang, K. T.; Shu, J.; Liu, L. H.; Zhang, H.; Lin, L. Y.; Shi, X. Y.; Schlarb, A. K.; Zhang, J. M. Air-dried porous powder of polymethyl methacrylate modified cellulose nanocrystal nanocomposite and its diverse applications. Compos. Sci. Technol., 2020, 188, 107985.
Revin, V.; Liyaskina, E.; Nazarkina, M.; Bogatyreva, A.; Shchankin, M. Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz. J. Microbiol., 2018, 49, 151–159.
Wang, T.; Drzal, L. T. Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl. Mater. Interfaces, 2012, 4(10), 5079–5085.
Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O' Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G.; Chen, J.; Wang, J. Z.; Minett, A. I.; Nicolosi, V.; Coleman, J. N. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater., 2011, 23(34), 3944–3948.
Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc., 2009, 131(10), 3611–3620.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun' Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563–568.
Tshikovhi, A.; Mishra, S. B.; Mishra, A. K. Nanocellulose-based composites for the removal of contaminants from wastewater. Int. J. Biol. Macromol., 2020, 152, 616–632.
Li, G. H.; Tian, X. J.; Xu, X. W.; Zhou, C.; Wu, J. Y.; Li, Q.; Zhang, L. Q.; Yang, F.; Li, Y. F. Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers. Compos. Sci. Technol., 2017, 138, 179–185.
Zhang, Y. H.; Hao, N. K.; Lin, X. J.; Nie, S. X. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydr. Polym., 2020, 234, 115888.
Nie, S. X.; Mo, J. L.; Zhang, Y. H.; Xiong, C. Y.; Wang, S. F. Ultra-high thermal-conductive, reduced graphene oxide welded cellulose nanofibrils network for efficient thermal management. Carbohydr. Polym., 2020, 250, 116971.
Xiong, R.; Kim, H. S.; Zhang, L. J.; Korolovych, V. F.; Zhang, S. D.; Yingling, Y. G.; Tsukruk, V. V. Wrapping nanocellulose nets around graphene oxide sheets. Angew. Chem. Int. Ed., 2018, 57(28), 8508–8513.
El Miri, N.; El Achaby, M.; Fihri, A.; Larzek, M.; Zahouily, M.; Abdelouahdi, K.; Barakat, A.; Solhy, A. Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydr. Polym., 2016, 137, 239–248.
Cao, J.; Zhang, X. X.; Wu, X. D.; Wang, S. M.; Lu, C. H. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohydr. Polym., 2016, 140, 88–95.
Fu, W. L.; Dai, Y. Q.; Meng, X. Y.; Xu, W. L.; Zhou, J. E.; Liu, Z. G.; Lu, W. B.; Wang, S. M.; Huang, C. B.; Sun, Y. M. Electronic textiles based on aligned electrospun belt-like cellulose acetate nanofibers and graphene sheets: portable, scalable and eco-friendly strain sensor. Nanotechnology, 2019, 30(4), 045602.
Li, Z. X.; Wang, J. A.; Dai, L.; Sun, X. H.; An, M.; Duan, C.; Li, J.; Ni, Y. H. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl. Mater. Interfaces, 2020, 12(49), 55205–55214.
Li, L.; Ma, Z. G.; Xu, P. H.; Zhou, B.; Li, Q. T.; Ma, J. M.; He, C. G.; Feng, Y. Z.; Liu, C. T. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Compos. A, 2020, 139, 106134.
Hou, M. J.; Xu, M. J.; Li, B. Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure. ACS Sustain. Chem. Eng., 2018, 6(3), 2983–2990.
Carrasco, P. M.; Montes, S.; García, I.; Borghei, M.; Jiang, H.; Odriozola, I.; Cabañero, G.; Ruiz, V. High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals. Carbon, 2014, 70, 157–163.
Wang, R. B.; Ma, Q. L.; Zhang, H. L.; Ma, Z. Q.; Yang, R. D.; Zhu, J. Y. Producing conductive graphene-nanocellulose paper in one-pot. J. Polym. Environ., 2019, 27(1), 148–157.
Zaman, A.; Orasugh, J. T.; Banerjee, P.; Dutta, S.; Ali, M. S.; Das, D.; Bhattacharya, A.; Chattopadhyay, D. Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohydr. Polym., 2020, 246, 116661.
Montes, S.; Carrasco, P. M.; Ruiz, V.; Cabañero, G.; Grande, H. J.; Labidi, J.; Odriozola, I. Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Compos. Sci. Technol., 2015, 117, 26–31.
Liu, K.; Hu, J.; Kong, Z. Q.; Hu, J. W.; Tian, Z. S.; Hou, J. R.; Qin, J. L.; Liu, C. S.; Liang, S.; Wu, H. P.; Zhang, J. M.; Zong, L.; Duan, Y. X. High-yield, high-conductive graphene/nanocellulose hybrids prepared by co-exfoliation of low-oxidized expanded graphite and microfibrillated cellulose. Compos. B, 2021, 225, 109250.
Zhang, X. F.; Lu, Z. X.; Zhao, J. Q.; Li, Q. Y.; Zhang, W.; Lu, C. H. Exfoliation/dispersion of low-temperature expandable graphite in nanocellulose matrix by wet co-milling. Carbohydr. Polym., 2017, 157, 1434–1441.
Shao, C.; Li, X. P.; Lin, S. G.; Zhuo, B.; Yang, S.; Yuan, Q. P. Characterization of nanocellulose-graphene electric heating membranes preparedvia ultrasonic dispersion. J. Mater. Sci., 2020, 55(1), 421–437.
Wang, Z. G.; Song, L.; Wang, Y. Q.; Zhang, X. F.; Yao, J. F. Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. J. Phys. Chem. Solids, 2021, 150, 109839.
Liu, P.; Zhu, C. T.; Mathew, A. P. Mechanically robust high flux graphene oxide-nanocellulose membranes for dye removal from water. J. Hazard. Mater., 2019, 371, 484–493.
Valencia, L.; Monti, S.; Kumar, S.; Zhu, C. T.; Liu, P.; Yu, S.; Mathew, A. P. Nanocellulose/graphene oxide layered membranes: elucidating their behaviour during filtration of water and metal ions in real time. Nanoscale, 2019, 11(46), 22413–22422.
Zhou, Y. B.; Chen, C. J.; Zhu, S. Z.; Sui, C.; Wang, C.; Kuang, Y. D.; Ray, U.; Liu, D. P.; Brozena, A.; Leiste, U. H.; Quispe, N.; Guo, H.; Vellore, A.; Bruck, H. A.; Martini, A.; Foster, B.; Lou, J.; Li, T.; Hu, L. B. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Mater. Today, 2019, 30, 17–25.
Luo, H. L.; Xiong, G. Y.; Yang, Z. W.; Raman, S. R.; Si, H. J.; Wan, Y. Z. A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared byin situ biosynthesis. RSC Adv., 2014, 4(28), 14369–14372.
Hu, J. W.; Hou, J. R.; Huang, S. S.; Zong, L.; Li, X. D.; Zhang, Z. J.; Duan, Y. X.; Zhang, J. M. One-pot preparation of zwitterionic graphene nanosheets with exceptional redispersibility and its application in Pickering emulsions. Carbon, 2020, 157, 448–456.
Blanco, S.; Pinacho, P.; López, J. C. Hydrogen-bond cooperativity in formamide2–water: a model for water-mediated interactions. Angew. Chem. Int. Ed., 2016, 55(32), 9331–9335.
Liu, B.; Jiang, M.; Zhu, D. Z.; Zhang, J. M.; Wei, G. Metal-organic frameworks functionalized with nucleic acids and amino acids for structure- and function-specific applications: a tutorial review. Chem. Eng. J., 2022, 428, 131118.
Kumar, A.; Rao, K. M.; Han, S. S. Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr. Polym., 2018, 193, 228–238.
Opalade, A. A.; Hessefort, L.; Day, V. W.; Jackson, T. A. Controlling the reactivity of a metal-hydroxo adduct with a hydrogen bond. J. Am. Chem. Soc., 2021, 143(37), 15159–15175.
Dhar, P.; Etula, J.; Bankar, S. B. In situ bioprocessing of bacterial cellulose with graphene: percolation network formation, kinetic analysis with physicochemical and structural properties assessment. ACS Appl. Bio Mater., 2019, 2(9), 4052–4066.
Xie, R. H.; Ren, P. G.; Hui, J.; Ren, F.; Ren, L. Z.; Sun, Z. F. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr. Polym., 2016, 138, 222–228.
Qiu, B. W.; Sun, T.; Li, M. X.; Chen, Y.; Zhou, S. T.; Liang, M.; Zou, H. W. High micromechanical interlocking graphene oxide/carboxymethyl cellulose composite architectures for enhancing the interface adhesion between carbon fiber and epoxy. Compos. A, 2020, 139, 106092.
Wang, L.; Gong, C. C.; Yuan, X. Z.; Wei, G. Controlling the self-assembly of biomolecules into functional nanomaterials through internal interactions and external stimulations: a review. Nanomaterials, 2019, 9(2), 285.
Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479–3500.
Wei, W. W.; Guan, Q. B.; You, C. T.; Yu, J. Y.; Yuan, Z. H.; Qiang, P. R.; Zhou, C. X.; Ren, Y.; You, Z. W.; Zhang, F. Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation. J. Mater. Chem. A, 2020, 8(28), 13927–13934.
Yao, C. F.; Yi, J. W.; Lai, H. H.; Shi, G.; Hu, Y. J.; Chen, Z. H.; Zhai, J. Y.; Wang, X. H.; Zhong, L. X.; Liu, C. F. Enhancing the mechanical performance of reduced graphene oxide aerogel with cellulose nanofibers. ChemNanoMat, 2021, 7(8), 950–957.
Ferreira, E. S.; da Silva, D. S.; Burgo, T. A. L.; Batista, B. C.; Galembeck, F. Graphite exfoliation in cellulose solutions. Nanoscale, 2017, 9(29), 10219–10226.
Reyssat, M.; Richard, D.; Clanet, C.; Quéré, D. Dynamical superhydrophobicity. Faraday Discuss., 2010, 146, 19.
Xiong, R.; Kim, H. S.; Zhang, L. J.; Korolovych, V. F.; Zhang, S. D.; Yingling, Y. G.; Tsukruk, V. V. Wrapping nanocellulose nets around graphene oxide sheets. Angew. Chem. Int. Ed., 2018, 57(28), 8508–8513.
Zhang, T. P.; Zhang, X. F.; Chen, Y. W.; Duan, Y. X.; Zhang, J. M. Green fabrication of regenerated cellulose/graphene films with simultaneous improvement of strength and toughness by tailoring the nanofiber diameter. ACS Sustain. Chem. Eng., 2018, 6(1), 1271–1278.
Pan, S. X.; Wang, P.; Liu, P. Y.; Wu, T. Q.; Liu, Y. C.; Ma, J. H.; Lu, H. B. Stable cellulose/graphene inks mediated by an inorganic base for the fabrication of conductive fibers. J. Mater. Chem. C, 2021, 9(17), 5779–5788.
Wei, W. W.; Vekariy, R. L.; You, C. T.; He, Y. F.; Liu, P.; Wu, D. Q.; Zhang, F. Concisely modularized assembling of graphene-based thin films with promising electrode performance. Mater. Chem. Front., 2019, 3(7), 1462–1470.
Zhou, Y. X.; Saito, T.; Bergström, L.; Isogai, A. Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules, 2018, 19(2), 633–639.
Yang, X. N.; Xue, D. D.; Li, J. Y.; Liu, M.; Jia, S. R.; Chu, L. Q.; Wahid, F.; Zhang, Y. M.; Zhong, C. Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr. Polym., 2016, 136, 1152–1160.
Liu, Y. R.; Wang, Y. L.; Nie, Y.; Wang, C. L.; Ji, X. Y.; Zhou, L.; Pan, F. J.; Zhang, S. J. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids. ACS Sustainable Chem. Eng., 2019, 7(24), 20013–20021.
Yu, H.; Hong, H. J.; Kim, S. M.; Ko, H. C.; Jeong, H. S. Mechanically enhanced graphene oxide/carboxymethyl cellulose nanofibril composite fiber as a scalable adsorbent for heavy metal removal. Carbohydr. Polym., 2020, 240, 116348.
Khawaja, H.; Zahir, E.; Asghar, M. A.; Asghar, M. A. Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int. J. Biol. Macromol., 2021, 167, 23–34.
Jia, W.; Wu, P. Y. Stable functionalized graphene oxide–cellulose nanofiber solid electrolytes with long-range 1D/2D ionic nanochannels. J. Mater. Chem. A, 2019, 7(36), 20871–20877.
Anaya-Plaza, E.; Shaukat, A.; Lehtonen, I.; Kostiainen, M. A. Biomolecule-directed carbon nanotube self-assembly. Adv. Healthcare Mater., 2021, 10(1), 2001162.
Wang, X. D.; Yin, R. L.; Zeng, L. X.; Zhu, M. S. A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ. Pollut., 2019, 253, 100–110.
Layek, R. K.; Ramakrishnan, K. R.; Sarlin, E.; Orell, O.; Kanerva, M.; Vuorinen, J.; Honkanen, M. Layered structure graphene oxide/methylcellulose composites with enhanced mechanical and gas barrier properties. J. Mater. Chem. A, 2018, 6(27), 13203–13214.
Dhar, P.; Pratto, B.; Gonçalves Cruz, A. J.; Bankar, S. Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: kinetic analysis and property evaluation. J. Clean. Prod., 2019, 238, 117859.
Khalifa, M.; Wuzella, G.; Lammer, H.; Mahendran, A. R. Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor. Synth. Met., 2020, 266, 116420.
许凯瑞, 宫庆华, 周国伟. 纳米纤维素的分类制备及其在电化学应用中的研究进展. 高分子通报, 2020, (10), 12–20.
Kucinskis, G.; Bajars, G.; Kleperis, J. Graphene in lithium ion battery cathode materials: a review. J. Power Sources, 2013, 240, 66–79.
Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1), 109–162.
Chen, G. Y.; Chen, T.; Hou, K.; Ma, W. J.; Tebyetekerwa, M.; Cheng, Y. H.; Weng, W.; Zhu, M. F. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon, 2018, 127, 218–227.
Zhang, Y.; Feng, H.; Wu, X. B.; Wang, L. Z.; Zhang, A. Q.; Xia, T. C.; Dong, H. C.; Li, X. F.; Zhang, L. S. Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrog. Energy, 2009, 34(11), 4889–4899.
Tagliaferri, S.; Nagaraju, G.; Panagiotopoulos, A.; Och, M.; Cheng, G.; Iacoviello, F.; Mattevi, C. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance. ACS Nano, 2021, 15(9), 15342–15353.
Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci., 2017, 3(10), 1063–1069.
Wu, Y. J.;Tang, R. H.; Li, W. C.; Wang, Y.; Huang, L.; Liu, O.Y.A high-quality aqueous graphene conductive slurry applied in anode of lithium-ion batteries. J. Alloys Compd., 2020, 830, 154575.
Wu, H. Y.; Deng, S.; Shao, Y. W.; Yang, J. H.; Qi, X. D.; Wang, Y. Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization. ACS Appl. Mater. Interfaces, 2019, 11(50), 46851–46863.
Storer, D. P.; Phelps, J. L.; Wu, X. A.; Owens, G.; Khan, N. I.; Xu, H. L. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation. ACS Appl. Mater. Interfaces, 2020, 12(13), 15279–15287.
Raya, I.; Widjaja, G.; Mahmood, Z. H.; Kadhim, A. J.; Vladimirovich, K. O.; Mustafa, Y. F.; Kadhim, M. M.; Mahmudiono, T.; Husein, I.; Kafi-Ahmadi, L. Kinetic, isotherm, and thermodynamic studies on Cr(VI) adsorption using cellulose acetate/graphene oxide composite nanofibers. Appl. Phys. A, 2022, 128(2), 1–9.
罗业燊, 谢炎坤, 郭玉玥. 纤维素吸附剂相关进展. 高分子通报, 2017, (8), 67–71.
田甜, 付义乐, 关丽, 王溢源, 周军. 海藻酸钠-羧甲基纤维素-氧化石墨烯复合气凝胶的制备及其对pb(II)的吸附. 复合材料学报, 2023, 40(10), 5792–5802.
Kyzas, G. Z.; Deliyanni, E. A.; Bikiaris, D. N.; Mitro-poulos, A. C. Graphene composites as dye adsorbents: review. Chem. Eng. Res. Des., 2018, 129, 75–88.
Ren, F.; Li, Z.; Tan, W. Z.; Liu, X. H.; Sun, Z. F.; Ren, P. G.; Yan, D. X. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J. Colloid Interface Sci., 2018, 532, 58–67.
Sajab, M. S.; Chia, C. H.; Chan, C. H.; Zakaria, S.; Kaco, H.; Chook, S. W.; Chin, S. X.; Noor, A. M. Bifunctional graphene oxide-cellulose nanofibril aerogel loaded with Fe(iii) for the removal of cationic dyevia simultaneous adsorption and fenton oxidation. RSC Adv., 2016, 6(24), 19819–19825.
Wei, X.; Huang, T.; Yang, J. H.; Zhang, N.; Wang, Y.; Zhou, Z. W. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. J. Hazard. Mater., 2017, 335, 28–38.
Ghaseminezhad, S. M.; Barikani, M.; Salehirad, M. Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Compos. B, 2019, 161, 320–327.
赵宁, 钱振超, Yang, Q., Su, Y., Chi, C., Cherian, C. T., Huang, K., Kravets, V. G., Wang, F. C., Zhang, J. C., Pratt, A., Grigorenko, A. N., Guinea, F., Geim, A. K., Nair, R. R. 氧化石墨烯薄膜首次实现有机分子筛分. 高分子通报, 2018, (1), 2.
Mohammed, S.; Hegab, H. M.; Ou, R. W. Nanofiltration performance of glutaraldehyde crosslinked graphene oxide-cellulose nanofiber membrane. Chem. Eng. Res. Des., 2022, 183, 1–12.
Fang, Q. L.; Zhou, X. F.; Deng, W.; Zheng, Z.; Liu, Z. P. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. Sci. Rep., 2016, 6, 33185.
Chen, Y. A.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. S. Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J. Mater. Chem. A, 2018, 6(17), 7777–7785.
Zhang, H.; Sun, X. H.; Hubbe, M. A.; Pal, L. Highly conductive carbon nanotubes and flexible cellulose nanofibers composite membranes with semi-interpenetrating networks structure. Carbohydr. Polym., 2019, 222, 115013.
Zheng, C. X.; Yue, Y. Y.; Gan, L.; Xu, X. W.; Mei, C. T.; Han, J. Q. Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels. Nanomaterials, 2019, 9(7), 937.
Franco, M.; Alves, R.; Perinka, N.; Tubio, C.; Costa, P.; Lanceros-Mendéz, S. Water-based graphene inks for all-printed temperature and deformation sensors. ACS Appl. Electron. Mater., 2020, 2(9), 2857–2867.
Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater., 2014, 26(13), 2022–2027.
0
浏览量
107
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构