浏览全部资源
扫码关注微信
1..西安交通大学生物医学信息工程教育部重点实验室,西安 710049
2..西安交通大学仿生工程与生物力学研究所,西安 710049
3..西安体育学院,西安 710068
4..长安大学体育学院,西安 710061
5..陕西省拳击跆拳道运动管理中心,西安 710061
6..重庆市体育科学研究所,重庆 400015
7..湖州师范大学体育学院,湖州 313000
*任超学,E-mail: wylingzhi@126.com
纸质出版日期:2024-01-20,
收稿日期:2023-04-21,
录用日期:2023-06-05
扫 描 看 全 文
常宁, 冯瑞, 袁海龙, 梅洁, 吕冰强, 田原, 耿家先, 任超学. 体液分析的柔性可穿戴传感器在运动员即时训练监控中的应用. 高分子通报, 2024, 37(1), 23–35
Chang, N.; Feng, R.; Yuan, H. L.; Mei, J.; Lv, B. Q.; Tian, Y.; Geng, J. X.; Ren, C. X. Application of flexible wearable sensors for body fluid analysis in real-time training monitoring of athletes. Polym. Bull. (in Chinese), 2024, 37(1), 23–35
常宁, 冯瑞, 袁海龙, 梅洁, 吕冰强, 田原, 耿家先, 任超学. 体液分析的柔性可穿戴传感器在运动员即时训练监控中的应用. 高分子通报, 2024, 37(1), 23–35 DOI: 10.14028/j.cnki.1003-3726.2024.23.144.
Chang, N.; Feng, R.; Yuan, H. L.; Mei, J.; Lv, B. Q.; Tian, Y.; Geng, J. X.; Ren, C. X. Application of flexible wearable sensors for body fluid analysis in real-time training monitoring of athletes. Polym. Bull. (in Chinese), 2024, 37(1), 23–35 DOI: 10.14028/j.cnki.1003-3726.2024.23.144.
现代竞技体育追求运动成绩不断提高,高水平运动员不断寻求新的科学技术和方法设计个性化训练计划,以提高运动表现。目前,在运动队中使用较多的柔性可穿戴传感器主要监测运动员运动指标的水平和身体机能水平。这些可穿戴设备以汗液、唾液和泪液等体液作为样本来源,可以实现葡萄糖、乳酸和尿酸等多个与运动相关的生化指标检测,为运动员的日常训练带来了极大的便利。本文综述了近年来用于运动监测的柔性可穿戴传感器及其最新研究进展,为从事竞技体育运动的工作者提供最新、最前沿的可穿戴传感器技术总结,为制定更为精准有效的科学训练方法提供理论支持。
Modern competitive sport pursues the continuous improvement of sports performance. High level athletes constantly seek new science and technology and methods to design personalized training plans to improve sports performance. At present
flexible wearable sensors were commonly used in sports teams mainly to monitor the level of athletes’ sports indicators and physical function levels. These wearable devices use bodily fluids such as sweat
saliva
and tears as sample sources
and can detect multiple sports related biochemical indicators such as glucose
lactate
and uric acid. In this paper
we review the latest research progress of the flexible wearable sensors used for sports monitoring in recent years
expecting to provide the latest and cutting-edge summary of wearable sensor technology for workers engaged in competitive sport
and theoretical support for developing more accurate and effective scientific training methods.
运动员体液分析柔性可穿戴传感器
AthletesBody fluid analysisFlexible wearable sensors
Li, X.; Dunn, J.; Salins, D.; Zhou, G.; Zhou, W. Y.; Schüssler-Fiorenza Rose, S. M.; Perelman, D.; Colbert, E.; Runge, R.; Rego, S.; Sonecha, R.; Datta, S.; McLaughlin, T.; Snyder, M. P. Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLoS Biol., 2017, 15(1), e2001402.
Grayson, A. C. R.; Shawgo, R. S.; Johnson, A. M.; Flynn, N. T.; Li, Y. W.; Cima, M. J.; Langer, R. A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE, 2004, 92(1), 6–21.
Bandodkar, A. J.; Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol., 2014, 32(7), 363–371.
Lee, S. P.; Ha, G.; Wright, D. E.; Ma, Y. J.; Sen-Gupta, E.; Haubrich, N. R.; Branche, P. C.; Li, W. H.; Huppert, G. L.; Johnson, M.; Mutlu, H. B.; Li, K.; Sheth, N.; Wright, J. A.; Huang, Y. G.; Mansour, M.; Rogers, J. A.; Ghaffari, R. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit. Med., 2018, 1, 2.
Taelman, J.; Adriaensen, T.; van der Horst, C.; Linz, T.; Spaepen, A. Textile integrated contactless EMG sensing for stress analysis. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007. 3966–3969.
Park, J. L.; Fairweather, M. M.; Donaldson, D. I. Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev., 2015, 52, 117–130.
Barry, R. C.; Lin, Y. H.; Wang, J.; Liu, G. D.; Timchalk, C. A. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J. Expo. Sci. Environ. Epidemiol., 2009, 19(1), 1–18.
Couto, R. A. S.; Quinaz, M. B. Development of a nafion/MWCNT-SPCE-based portable sensor for the voltammetric analysis of the anti-tuberculosis drug ethambutol. Sensors, 2016, 16(7), 1015.
Cao, L. L.; Chen, L. Y.; Li, H. H.; Wei, Z. R.; Xie, S. T.; Zhang, M. J.; Lin, Y.; Huang, H. H. Differential antigen expression between human eccrine sweat glands and hair follicles/pilosebaceous units. J. Mol. Histol., 2019, 50(4), 335–342.
Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; Naik, R. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 2015, 9(3), 031301.
Wang, H. C.; Lee, A. R. Recent developments in blood glucose sensors. J. Food Drug Anal., 2015, 23(2), 191–200.
Wang, J.; Wang, L. R.; Li, G. H.; Yan, D.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Ultra-small wearable flexible biosensor for continuous sweat analysis. ACS Sens., 2022, 7(10), 3102–3107.
Turpeinen, U.; Hämäläinen, E. Determination of cortisol in serum, saliva and urine. Best Pract. Res. Clin. Endocrinol. Metab., 2013, 27(6), 795–801.
Nunes, L. A. S.; Mussavira, S.; Bindhu, O. S. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review. Biochem. Med., 2015, 25(2), 177–192.
Kim, J.; Valdés-Ramírez, G.; Bandodkar, A. J.; Jia, W. Z.; Martinez, A. G.; Ramírez, J.; Mercier, P.; Wang, J. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 2014, 139(7), 1632–1636.
Kim, J.; Imani, S.; de Araujo, W. R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T. R. L. C.; Mercier, P. P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron., 2015, 74, 1061–1068.
Yao, H. F.; Shum, A. J.; Cowan, M.; Lähdesmäki, I.; Parviz, B. A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron., 2011, 26(7), 3290–3296.
Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E. F. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta, 2007, 383(1-2), 30–40.
Ferrell, W. R.; Ramsay, J. E.; Brooks, N.; Lockhart, J. C.; Dickson, S.; McNeece, G. M.; Greer, I. A.; Sattar, N. Elimination of electrically induced iontophoretic artefacts: implications for non-invasive assessment of peripheral microvascular function. J. Vasc. Res., 2002, 39(5), 447–455.
Roustit, M.; Blaise, S.; Cracowski, J. L. Trials and tribulations of skin iontophoresis in therapeutics. Br. J. Clin. Pharmacol., 2014, 77(1), 63–71.
Hauke, A.; Simmers, P.; Ojha, Y. R.; Cameron, B. D.; Ballweg, R.; Zhang, T.; Twine, N.; Brothers, M.; Gomez, E.; Heikenfeld, J. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip, 2018, 18(24), 3750–3759.
Bariya, M.; Shahpar, Z.; Park, H.; Sun, J. F.; Jung, Y.; Gao, W.; Nyein, H. Y. Y.; Liaw, T. S.; Tai, L. C.; Ngo, Q. P.; Chao, M. H.; Zhao, Y. B.; Hettick, M.; Cho, G.; Javey, A. Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano, 2018, 12(7), 6978–6987.
Martín, A.; Kim, J.; Kurniawan, J. F.; Sempionatto, J. R.; Moreto, J. R.; Tang, G. D.; Campbell, A. S.; Shin, A.; Lee, M. Y.; Liu, X. F.; Wang, J. Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens., 2017, 2(12), 1860–1868.
Sekine, Y.; Kim, S. B.; Zhang, Y.; Bandodkar, A. J.; Xu, S.; Choi, J.; Irie, M.; Ray, T. R.; Kohli, P.; Kozai, N.; Sugita, T.; Wu, Y. X.; Lee, K.; Lee, K. T.; Ghaffari, R.; Rogers, J. A. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip, 2018, 18(15), 2178–2186.
Moreddu, R.; Elsherif, M.; Adams, H.; Moschou, D.; Cordeiro, M. F.; Wolffsohn, J. S.; Vigolo, D.; Butt, H.; Cooper, J. M.; Yetisen, A. K. Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. Lab Chip, 2020, 20(21), 3970–3979.
Moreddu, R.; Vigolo, D.; Yetisen, A. K. Contact lens technology: from fundamentals to applications. Adv. Healthc. Mater., 2019, 8(15), 1900368.
Guo, S. Q.; Wu, K. J.; Li, C. P.; Wang, H.; Sun, Z.; Xi, D. W.; Zhang, S.; Ding, W. P.; Zaghloul, M. E.; Wang, C. N.; Castro, F. A.; Yang, D.; Zhao, Y. L. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter, 2021, 4(3), 969–985.
Jeon, H. J.; Kim, S.; Park, S.; Jeong, I. K.; Kang, J.; Kim, Y. R.; Lee, D. Y.; Chung, E. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett., 2021, 21(20), 8933–8940.
Rivera-Brown, A. M.; Quiñones-González, J. R. Normative data for sweat rate and whole-body sodium concentration in athletes indigenous to tropical climate. Int. J. Sport Nutr. Exerc. Metab., 2020, 30(4), 264–271.
Bandodkar, A. J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J. R.; Valdés-Ramírez, G.; Andrade, F. J.; Schöning, M. J.; Wang, J. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron., 2014, 54, 603–609.
Choi, D. H.; Kim, J. S.; Cutting, G. R.; Searson, P. C. Wearable potentiometric chloride sweat sensor: the critical role of the salt bridge. Anal. Chem., 2016, 88(24), 12241–12247.
Wujcik, E. K.; Blasdel, N. J.; Trowbridge, D.; Monty, C. N. Ion sensor for the quantification of sodium in sweat samples. IEEE Sens. J., 2013, 13(9), 3430–3436.
Alizadeh, A.; Burns, A.; Lenigk, R.; Gettings, R.; Ashe, J.; Porter, A.; McCaul, M.; Barrett, R.; Diamond, D.; White, P.; Skeath, P.; Tomczak, M. A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip, 2018, 18(17), 2632–2641.
Patterson, M. J.; Galloway, S. D. R.; Nimmo, M. A. Variations in regional sweat composition in normal human males. Exp. Physiol., 2000, 85(6), 869–875.
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D. H.; Brooks, G. A.; Davis, R. W.; Javey, A. Fully integrated wearable sensor arrays for multiplexedin situ perspiration analysis. Nature, 2016, 529(7587), 509–514.
Guinovart, T.; Bandodkar, A. J.; Windmiller, J. R.; Andrade, F. J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst, 2013, 138(22), 7031–7038.
Jia, W. Z.; Bandodkar, A. J.; Valdés-Ramírez, G.; Windmiller, J. R.; Yang, Z. J.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem., 2013, 85(14), 6553–6560.
Imani, S.; Bandodkar, A. J.; Mohan, A. M.; Kumar, R.; Yu, S. F.; Wang, J.; Mercier, P. P. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun., 2016, 7, 11650.
Cai, X.; Yan, J. L.; Chu, H. H.; Wu, M. S.; Tu, Y. F. An exercise degree monitoring biosensor based on electrochemiluminescent detection of lactate in sweat. Sens. Actuat. B, 2010, 143(2), 655–659.
Anastasova, S.; Crewther, B.; Bembnowicz, P.; Curto, V.; Ip, H. M.; Rosa, B.; Yang, G. Z. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron., 2017, 93, 139–145.
Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil., 2012, 9, 21.
Olarte, O.; Chilo, J.; Pelegri-Sebastia, J.; Barbé, K.; van Moer, W. Glucose detection in human sweat using an electronic nose. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 2013, 1462–1465.
La Count, T. D.; Jajack, A.; Heikenfeld, J.; Kasting, G. B. Modeling glucose transport from systemic circulation to sweat. J. Pharm. Sci., 2019, 108(1), 364–371.
Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; Manco, M. C.; Wang, L.; Ammann, K. R.; Jang, K. I.; Won, P.; Han, S.; Ghaffari, R.; Paik, U.; Slepian, M. J.; Balooch, G.; Huang, Y. G.; Rogers, J. A. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med., 2016, 8(366), 366ra165.
Schazmann, B.; Morris, D.; Slater, C.; Beirne, S.; Fay, C.; Reuveny, R.; Moyna, N.; Diamond, D.A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Anal. Methods, 2010, 8, 342–348.
Rose, D. P.; Ratterman, M. E.; Griffin, D. K.; Hou, L. L.; Kelley-Loughnane, N.; Naik, R. R.; Hagen, J. A.; Papautsky, I.; Heikenfeld, J. C. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng., 2015, 62(6), 1457–1465.
Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z. A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S. P.; Fahad, H. M.; Chen, K.; Shahpar, Z.; Talebi, S.; Milla, C.; Javey, A.; Davis, R. W. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA, 2017, 114(18), 4625–4630.
Lee, H.; Song, C.; Hong, Y. S.; Kim, M.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D. H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv., 2017, 3(3), e1601314.
Kaushik, A.; Vasudev, A.; Arya, S. K.; Pasha, S. K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron., 2014, 53, 499–512.
Choi, J.; Ghaffari, R.; Baker, L. B.; Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv., 2018, 4(2), eaar3921.
Abellán-Llobregat, A.; Jeerapan, I.; Bandodkar, A.; Vidal, L.; Canals, A.; Wang, J.; Morallón, E. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens. Bioelectron., 2017, 91, 885–891.
Bandodkar, A. J.; Jia, W. Z.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem., 2015, 87(1), 394–398.
Jia, M.; Chew, W. M.; Feinstein, Y.; Skeath, P.; Sternberg, E. M. Quantification of cortisol in human eccrine sweat by liquid chromatography—tandem mass spectrometry. Analyst, 2016, 141(6), 2053–2060.
Port, K. Serum and saliva cortisol responses and blood lactate accumulation during incremental exercise testing. Int. J. Sports Med., 1991, 12(5), 490–494.
Wester, V. L.; van Rossum, E. F. C. Clinical applications of cortisol measurements in hair. Eur. J. Endocrinol., 2015, 173(4), M1–M10.
Venugopal, M.; Arya, S. K.; Chornokur, G.; Bhansali, S. A realtime and continuous assessment of cortisol in ISF using electrochemical impedance spectroscopy. Sens. Actuat. A, 2011, 172(1), 154–160.
Marques-Deak, A.; Cizza, G.; Eskandari, F.; Torvik, S.; Christie, I. C.; Sternberg, E. M.; Phillips, T. M. Measurement of cytokines in sweat patches and plasma in healthy women: validation in a controlled study. J. Immunol. Methods, 2006, 315(1-2), 99–109.
Hagen, J.; Lyon, W.; Chushak, Y.; Tomczak, M.; Naik, R.; Stone, M.; Kelley-Loughnane, N. Detection of orexin A neuropeptide in biological fluids using a zinc oxide field effect transistor. ACS Chem. Neurosci., 2013, 4(3), 444–453.
Roychoudhury, A.; Basu, S.; Jha, S. K. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens. Bioelectron., 2016, 84, 72–81.
Hagen, J. A.; Heikenfeld, J. C.; Papatskki, I.; Hou, L.; Naik, R.; Kelly-Locknan, N.; Stone, M.; Busby, J.; Wang, X. Sweat simulation, collection and sensing systems. US patent, US201261620069P, 2013-04-03.
Selva Kumar, L. S.; Wang, X.; Hagen, J.; Naik, R.; Papautsky, I.; Heikenfeld, J. Label free nano-aptasensor for interleukin-6 in protein-dilute bio fluids such as sweat. Anal. Methods, 2016, 8(17), 3440–3444.
Parlak, O.; Keene, S. T.; Marais, A.; Curto, V. F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv., 2018, 4(7), eaar2904.
Mahosenaho, M.; Caprio, F.; Micheli, L.; Sesay, A. M.; Palleschi, G.; Virtanen, V. A disposable biosensor for the determination of alpha-amylase in human saliva. Microchimica Acta, 2010, 170(3), 243–249.
Munje, R. D.; Muthukumar, S.; Prasad, S. Lancet-free and label-free diagnostics of glucose in sweat using zinc oxide based flexible bioelectronics. Sens. Actuat. B, 2017, 238, 482–490.
McKenna, M. J. The roles of ionic processes in muscular fatigue during intense exercise. Sports Med., 1992, 13(2), 134–145.
Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S. W.; Gaitonde, S.; Begtrup, G.; Katchman, B. A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol., 2019, 37(4), 407–419.
Reeder, J. T.; Choi, J.; Xue, Y. G.; Gutruf, P.; Hanson, J.; Liu, M.; Ray, T.; Bandodkar, A. J.; Avila, R.; Xia, W.; Krishnan, S.; Xu, S.; Barnes, K.; Pahnke, M.; Ghaffari, R.; Huang, Y. G.; Rogers, J. A. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv., 2019, 5(1), eaau6356.
Macaluso, F.; Di Felice, V.; Boscaino, G.; Bonsignore, G.; Stampone, T.; Farina, F.; Morici, G. Effects of three different water temperatures on dehydration in competitive swimmers. Sci. Sports, 2011, 26(5), 265–271.
Wang, L. R.; Xu, T. L.; He, X. C.; Zhang, X. J. Flexible, self-healable, adhesive and wearable hydrogel patch for colorimetric sweat detection. J. Mater. Chem. C, 2021, 9(41), 14938–14945.
He, X. C.; Fan, C.; Luo, Y.; Xu, T. L.; Zhang, X. J. Flexible microfluidic nanoplasmonic sensors for refreshable and portable recognition of sweat biochemical fingerprint. NPJ Flex. Electron., 2022, 6, 60.
Xi, P. Y.; He, X. C.; Fan, C.; Zhu, Q. L.; Li, Z. H.; Yang, Y. M.; Du, X.; Xu, T. L. Smart Janus fabrics for one-way sweat sampling and skin-friendly colorimetric detection. Talanta, 2023, 259, 124507.
He, X. C.; Fan, C.; Xu, T. L.; Zhang, X. J. Biospired Janus silk e-textiles with wet-thermal comfort for highly efficient biofluid monitoring. Nano Lett., 2021, 21(20), 8880–8887.
He, X. C.; Yang, S. J.; Pei, Q. B.; Song, Y. C.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Integrated smart Janus textile bands for self-pumping sweat sampling and analysis. ACS Sens., 2020, 5(6), 1548–1554.
Muaremi, A.; Arnrich, B.; Tröster, G. Towards measuring stress with smartphones and wearable devices during workday and sleep. BioNanoScience, 2013, 3(2), 172–183.
Yoon, S.; Sim, J. K.; Cho, Y. H. A flexible and wearable human stress monitoring patch. Sci. Rep., 2016, 6, 23468.
Makin, T. R.; de Vignemont, F.; Faisal, A. A. Neurocognitive barriers to the embodiment of technology. Nat. Biomed. Eng., 2017, 1, 14.
Banaee, H.; Ahmed, M. U.; Loutfi, A. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors, 2013, 13(12), 17472–17500.
Kubota, K. J.; Chen, J. A.; Little, M. A. Machine learning for large-scale wearable sensor data in Parkinson’s disease: concepts, promises, pitfalls, and futures. Mov. Disord., 2016, 31(9), 1314–1326.
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med., 2019, 25(1), 44–56.
Maegele, M. Traumatic brain injury in 2017: exploring the secrets of concussion. Lancet Neurol., 2018, 17(1), 13–15.
0
浏览量
140
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构