浏览全部资源
扫码关注微信
1..中国石油大学 (华东)石油工程学院,青岛 266580
2..山东省油田化学重点实验室,青岛 266580
*赵光,E-mail: zhaoguang@upc.edu.cn
纸质出版日期:2024-01-20,
收稿日期:2023-05-09,
录用日期:2023-06-01
扫 描 看 全 文
陈佳, 李琳, 戴彩丽, 赵光. 自适应润湿性油水分离网膜研究进展. 高分子通报, 2024, 37(1), 36–51
Chen, J.; Li, L.; Dai, C. L.; Zhao, G. Research progress of oil-water separation membranes with adaptable wettability. Polym. Bull. (in Chinese), 2024, 37(1), 36–51
陈佳, 李琳, 戴彩丽, 赵光. 自适应润湿性油水分离网膜研究进展. 高分子通报, 2024, 37(1), 36–51 DOI: 10.14028/j.cnki.1003-3726.2024.23.160.
Chen, J.; Li, L.; Dai, C. L.; Zhao, G. Research progress of oil-water separation membranes with adaptable wettability. Polym. Bull. (in Chinese), 2024, 37(1), 36–51 DOI: 10.14028/j.cnki.1003-3726.2024.23.160.
在石油资源开发与利用过程中,溢油事件的频发和工业含油污水的排放会威胁生态环境和人类健康。为了保护有限的水资源并从废水中回收油,近年来研究者们研究出了各种自适应润湿性油水分离网膜。这类网膜无需任何持续的外部刺激,只需简单的预润湿,就可以实现水下超疏油和油下超疏水间的可逆切换。根据材料在空气中的润湿性,我们将自适应润湿性油水分离网膜分为三大类: (1)空气中两亲-液下双疏网膜; (2)空气中亲油、疏水-液下双疏网膜; (3)空气中疏油、疏水-液下双疏网膜。本文总结了近几年来利用自适应润湿性材料来实现油水分离的相关研究工作和进展情况,针对材料的制备方法、过滤膜表面的构建过程、实现油水分离的原理以及这些材料的主要特点和应用效果等展开论述。最后,探讨了该领域目前面临的挑战,并对其应用前景进行了展望。
During the development and utilization of petroleum resources
the frequent occurrence of oil spills and the discharge of industrial oily wastewater will pose great danger to ecological environment and human health. To protect limited water resources and recover oil from wastewater
in recent years
researchers have developed various oil-water separation membranes with adaptable wettability. This type of membranes does not require any continuous external stimulation
and only needs to be pre-wet to realize the reversible switch between underwater superoleophobicity and underoil superhydrophobicity. According to the material wettability in air
oil-water separation membranes with adaptable wettability can be divided into three categories: (1) in air amphiphilic/under-liquid dual superlyophobic membranes; (2) in air oleophilic and hydrophobic/under-liquid dual superlyophobic membranes; (3) in air amphiphobic/under-liquid dual superlyophobic membranes. This review summarizes recent research progress in applying adaptable wettability materials to achieve oil-water separation
including the preparation methods
the construction process of the membrane surface
the principles of achieving oil-water separation
and the main characteristics and applications. Finally
challenges and future prospects of oil-water separation membranes with adaptable wettability are discussed.
自适应润湿性油水分离液下双疏网膜
Adaptable wettabilityOil-water separationUnder-liquid dual superlyophobicityMembranes
康万利, 孙春柳. 油田乳状液破乳方法研究进展. 管道技术与设备, 2006, (2), 1–4.
李坚, 张明, 强添刚. 特殊润湿性油水分离材料的研究进展. 森林与环境学报, 2016, 36(3), 257–265.
曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究. 化学进展, 2018, 30(1), 73–86.
Lei, Z. W.; Zheng, P. T.; Niu, L. Y.; Yang, Y.; Shen, J. L.; Zhang, W. D.; Wang, C. Y.Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with high oil retention. Appl. Surf. Sci., 2019, 489, 922–929.
Ge, J.; Zhao, H. Y.; Zhu, H. W.; Huang, J.; Shi, L.; Yu, S. H.Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv. Mater., 2016, 28(47), 10459–10490.
Ma, Q. L.; Cheng, H. F.; Fane, A. G.; Wang, R.; Zhang, H.Recent development of advanced materials with special wettability for selective oil/water separation. Small, 2016, 12(16), 2186–2202.
Chen, C. L.; Weng, D.; Mahmood, A.; Chen, S.; Wang, J. D.Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl. Mater. Interfaces, 2019, 11(11), 11006–11027.
Zhang, W. B.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L.Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater., 2013, 25(14), 2071–2076.
Ma, W. J.; Zhang, M. J.; Liu, Z. C.; Kang, M. M.; Huang, C. B.; Fu, G. D.Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. J. Membr. Sci., 2019, 570–571, 303–313.
Yue, X. J.; Li, J. X.; Zhang, T.; Qiu, F. X.; Yang, D. Y.; Xue, M. W.In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation. Chem. Eng. J., 2017, 328, 117–123.
Jamalludin, M. R.; Hubadillah, S. K.; Harun, Z.; Othman, M. H. D.; Yunos, M. Z.; Ismail, A. F.; Salleh, W. N. W.Facile fabrication of superhydrophobic and superoleophilic green ceramic hollow fiber membrane derived from waste sugarcane bagasse ash for oil/water separation. Arab. J. Chem., 2020, 13(1), 3558–3570.
Song, J. L.; Li, S. D.; Zhao, C. L.; Lu, Y.; Zhao, D. Y.; Sun, J.; Roy, T.; Carmalt, C. J.; Deng, X.; Parkin, I. P.A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation. Nanoscale, 2018, 10(4), 1920–1929.
Qu, M. N.; Ma, L. L.; Zhou, Y. C.; Zhao, Y.; Wang, J. X.; Zhang, Y.; Zhu, X. D.; Liu, X. R.; He, J. M.Durable and recyclable superhydrophilic-superoleophobic materials for efficient oil/water separation and water-soluble dyes removal. ACS Appl. Nano Mater., 2018, 1(9), 5197–5209.
Yuan, T.; Yin, J. A.; Liu, Y. L.; Tu, W. P.; Yang, Z. H.Micro/nanoscale structured superhydrophilic and underwater superoleophobic hybrid-coated mesh for high-efficiency oil/water separation. Polymers, 2020, 12(6), 1378.
Cheng, Z. J.; Wang, J. W.; Lai, H. A.; Du, Y.; Hou, R.; Li, C.; Zhang, N. Q.; Sun, K. N.pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir, 2015, 31(4), 1393–1399.
Cheng, M. J.; Liu, Q. A.; Ju, G. N.; Zhang, Y. J.; Jiang, L.; Shi, F.Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface. Adv. Mater., 2014, 26(2), 306–310.
Li, X. Y.; Zhang, Q. D.; Zhang, W. F.; Qu, R. X.; Wei, Y.; Feng, L.Smart nylon membranes with pH-responsive wettability: high-efficiency separation on demand for various oil/water mixtures and surfactant-stabilized emulsions. Adv. Mater. Interfaces, 2018, 5(21), 1801179.
Li, R. Q.; Zhang, G. L.; Wang, J. F.; Li, J. Q.; Zhang, C. H.; Wang, P. L.Superwetting pH-responsive polyaniline coatings: toward versatile separation of complex oil-water mixtures. Langmuir, 2020, 36(3), 760–768.
Wei, R. B.; Ma, J. Y.; Zhang, H. X.; He, Y. N.Synthesis, characterization, and photo-responsive properties of Y-shaped amphiphilic azo triblock copolymer. J. Appl. Polym. Sci., 2016, 133(29), 43695.
Weis, P.; Wu, S.Light-switchable azobenzene-containing macromolecules: from UV to near infrared. Macromol. Rapid Commun., 2018, 39(1), 1700220.
Caputo, G.; Cortese, B.; Nobile, C.; Salerno, M.; Cingolani, R.; Gigli, G.; Cozzoli, P. D.; Athanassiou, A.Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness. Adv. Funct. Mater., 2009, 19(8), 1149–1157.
Li, J. P.; Sun, Q. F.; Han, S. J.; Wang, J.; Wang, Z.; Jin, C. D.Reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity of hybrid ZnO/bamboo surfaces via alternation of UV irradiation and dark storage. Prog. Org. Coat., 2015, 87, 155–160.
Lei, L.; Zhang, Q.; Shi, S. X.; Zhu, S. P.Highly porous poly(high internal phase emulsion) membranes with open-cell structure and CO2-switchable wettability used for controlled oil/water separation. Langmuir, 2017, 33(43), 11936–11944.
Che, H. L.; Huo, M.; Peng, L. A.; Fang, T.; Liu, N.; Feng, L.; Wei, Y.; Yuan, J. Y.CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem. Int. Ed., 2015, 54(31), 8934–8938.
Zheng, Y. J.; Liu, X. A.; Xu, J. J.; Zhao, H. X.; Xiong, X. H.; Hou, X.; Cui, J. X.Thermoresponsive mobile interfaces with switchable wettability, optical properties, and penetrability. ACS Appl. Mater. Interfaces, 2017, 9(40), 35483–35491.
Lei, Z. W.; Zhang, G. Z.; Deng, Y. H.; Wang, C. Y.Thermoresponsive melamine sponges with switchable wettability by interface-initiated atom transfer radical polymerization for oil/water separation. ACS Appl. Mater. Interfaces, 2017, 9(10), 8967–8974.
Li, X. Y.; You, L.; Song, Y. F.; Gao, L.; Liu, Y.; Chen, W.; Mao, L. Q.Preparation of a phenolic-resin-based polymer sponge composed of intertwined nanofibers with tunable wettability for high-efficiency separation of oil-water emulsions. Langmuir, 2019, 35(46), 14902–14912.
Zheng, X.; Guo, Z. Y.; Tian, D. L.; Zhang, X. F.; Jiang, L.Electric field induced switchable wettability to water on the polyaniline membrane and oil/water separation. Adv. Mater. Interfaces, 2016, 3(18), 1600461.
Kung, C. H.; Zahiri, B.; Sow, P. K.; Mérida, W.On-demand oil-water separation via low-voltage wettability switching of core-shell structures on copper substrates. Appl. Surf. Sci., 2018, 444, 15–27.
Wang, W. W.; Lin, J. X.; Cheng, J. Q.; Cui, Z. X.; Si, J. H.; Wang, Q. T.; Peng, X. F.; Turng, L. S.Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J. Hazard. Mater., 2020, 385, 121582.
Zhang, Y.; Jing, Z. Z.; Kameda, T.; Yoshioka, T.Hydrothermal synthesis of hardened diatomite-based adsorbents with analcime formation for methylene blue adsorption. RSC Adv., 2016, 6(32), 26765–26774.
Li, J. A.; Guan, P.; Zhang, Y.; Xiang, B.; Tang, X. H.; She, H. D.A diatomite coated mesh with switchable wettability for on-demand oil/water separation and methylene blue adsorption. Sep. Purif. Technol., 2017, 174, 275–281.
Li, J.; Li, D. M.; Yang, Y. X.; Li, J. P.; Zha, F.; Lei, Z. Q.A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem., 2016, 18(2), 541–549.
Li, J.; Bai, X. G.; Tang, X. H.; Zha, F.; Feng, H.; Qi, W.Underwater superoleophobic/underoil superhydrophobic corn cob coated meshes for on-demand oil/water separation. Sep. Purif. Technol., 2018, 195, 232–237.
Li, W.; Gu, Z.; Yang, Y.; Zhou, S.; Liu, Y. F.; Zhang, J. S.Non-volatile taste components of several cultivated mushrooms. Food Chem., 2014, 143, 427–431.
Long, Y. F.; Shen, Y. Q.; Tian, H. F.; Yang, Y. X.; Feng, H.; Li, J.Superwettable Coprinus comatus coated membranes used toward the controllable separation of emulsified oil/water mixtures. J. Membr. Sci., 2018, 565, 85–94.
Li, J.; Zhao, Z. H.; Li, D. M.; Tian, H. F.; Zha, F.; Feng, H.; Guo, L.Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation. Nanoscale, 2017, 9(36), 13610–13617.
Leite, C.; Oliveira, V.; Miranda, I.; Pereira, H.Cork oak and climate change: disentangling drought effects on cork chemical composition. Sci. Rep., 2020, 10(1), 7800.
Zhou, Y. B.; Qu, K. G.; Zhang, L. H.; Luo, X. Q.; Liao, B. H.Green fabrication of biodegradable cork membrane for switchable separation of oil/water mixtures. J. Dispers. Sci. Technol., 2021, 42(2), 286–297.
Arshadi, M.; Azizi, M.; Souzandeh, H.; Tan, C.; Davachi, S. M.; Abbaspourrad, A.Robust, sustainable and multifunctional nanofibers with smart switchability for water-in-oil and oil-in-water emulsion separation and liquid marble preparation. J. Mater. Chem. A, 2019, 7(46), 26456–26468.
Afzal, A.; Abuilaiwi, F. A.; Habib, A.; Awais, M.; Waje, S. B.; Atieh, M. A.Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources, 2017, 352, 174–186.
Meng, Q. F.; Cai, K. F.; Chen, Y. X.; Chen, L. D.Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017, 36, 268–285.
Guo, B. L.; Ma, P. X.Conducting polymers for tissue engineering. Biomacromolecules, 2018, 19(6), 1764–1782.
Liu, M. M.; Hou, Y. Y.; Li, J.; Guo, Z. G.Stable superwetting meshes for on-demand separation of immiscible oil/water mixtures and emulsions. Langmuir, 2017, 33(15), 3702–3710.
Li, Y. B.; He, Y.; Fan, Y.; Shi, H.; Wang, Y. Q.; Ma, J.; Li, H. J.Novel dual superlyophobic cellulose membrane for multiple oil/water separation. Chemosphere, 2020, 241, 125067.
Li, D.; Kaner, R. B.Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem. Commun., 2005(26), 3286–3288.
Li, J.; Zhu, L. H.; Luo, W.; Liu, Y.; Tang, H. Q.Correlation between one-directional helical growth of polyaniline and its optical activity. J. Phys. Chem. C, 2007, 111(23), 8383–8388.
Zhou, P.; Li, J.; Yang, W. W.; Zhu, L. H.; Tang, H. Q.Polyaniline nanofibers: their amphiphilicity and uses for Pickering emulsions and on-demand emulsion separation. Langmuir, 2018, 34(8), 2841–2848.
Liu, M. M.; Li, J.; Guo, Z. G.Electrochemical route to prepare polyaniline-coated meshes with controllable pore size for switchable emulsion separation. Chem. Eng. J., 2016, 304, 115–120.
Mai, V. C.; Das, P.; Zhou, J. J.; Lim, T. T.; Duan, H. W.Mussel-inspired dual-superlyophobic biomass membranes for selective oil/water separation. Adv. Mater. Interfaces, 2020, 7(6), 1901756.
Li, L.; Xu, Z. Z.; Sun, W.; Chen, J.; Dai, C. L.; Yan, B.; Zeng, H. B.Bio-inspired membrane with adaptable wettability for smart oil/water separation. J. Membr. Sci., 2020, 598, 117661.
Jiang, Y. Z.; Liu, C. Y.; Li, Y. H.; Huang, A. S.Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation. J. Membr. Sci., 2019, 587, 117177.
Zhang, Z. X.; Han, N.; Tan, L. L.; Qian, Y. Q.; Zhang, H. R.; Wang, M. L.; Li, W.; Cui, Z. Y.; Zhang, X. X.Bioinspired superwettable covalent organic framework nanofibrous composite membrane with a spindle-knotted structure for highly efficient oil/water emulsion separation. Langmuir, 2019, 35(50), 16545–16554.
Dong, Y.; Huang, C. X.; Yang, X. Y.Underwater superoleophobic and underoil superhydrophobic surface made by liquid-exfoliated MoS2 for on-demand oil-water separation. Chem. Eng. J., 2019, 361, 322–328.
Wang, M. K.; Zhang, Z. Z.; Wang, Y. L.; Zhao, X.; Yang, M. M.; Men, X. H.Superwetting fabrics towards multifunctional applications: oil/water separation, anti-fouling and flame-retardance. Appl. Surf. Sci., 2020, 508, 145265.
Zhao, X. T.; Su, Y. L.; Liu, Y. N.; Li, Y. F.; Jiang, Z. Y.Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Appl. Mater. Interfaces, 2016, 8(12), 8247–8256.
Shi, L. R.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Xie, K. W.; Huang, Y. Y.; Zhang, Y. F.; Liu, Z. F.Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation. J. Am. Chem. Soc., 2016, 138(20), 6360–6363.
Bao, Z.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M.Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. J. Membr. Sci., 2020, 598, 117804.
Zhou, C. L.; Cheng, J.; Hou, K.; Zhu, Z. T.; Zheng, Y. F.Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chem. Eng. J., 2017, 307, 803–811.
Liu, L.; Ding, L.; Liu, Y. G.; An, W. J.; Lin, S. L.; Liang, Y. H.; Cui, W. Q.Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures. Appl. Surf. Sci., 2016, 364, 505–515.
Li, H. P.; Su, Z.; Hu, S. Y.; Yan, Y. W.Free-standing and flexible Cu/Cu2O/CuO heterojunction net: a novel material as cost-effective and easily recycled visible-light photocatalyst. Appl. Catal. B, 2017, 207, 134–142.
Zhan, B.; Liu, Y.; Li, S. Y.; Kaya, C.; Stegmaier, T.; Aliabadi, M.; Han, Z. W.; Ren, L. Q.Fabrication of superwetting Cu2@Cu2O cubic film for oil/water emulsion separation and photocatalytic degradation. Appl. Surf. Sci., 2019, 496, 143580.
Yang, W. W.; Li, J.; Zhou, P.; Zhu, L. H.; Tang, H. Q.Superhydrophobic copper coating: switchable wettability, on-demand oil-water separation, and antifouling. Chem. Eng. J., 2017, 327, 849–854.
Vaidulych, M.; Shelemin, A.; Hanuš, J.; Khalakhan, I.; Krakovsky, I.; Kočová, P.; Mašková, H.; Kratochvíl, J.; Pleskunov, P.; Štěrba, J.; Kylián, O.; Choukourov, A.; Biederman, H.Superwettable antibacterial textiles for versatile oil/water separation. Plasma Process. Polym., 2019, 16(5), 1900003.
Wang, H.; Yang, S. D.; Ma, P. C.Bi-functional composite foam with hierarchical structure for efficient separation of emulsified mixtures consisting of oil and water. Appl. Surf. Sci., 2019, 483, 1149–1157.
Wang, M. K.; Zhang, Z. Z.; Wang, Y. L.; Zhao, X.; Yang, M. M.; Men, X. H.Durable superwetting materials through layer-by-layer assembly: multiple separations towards water/oil mixtures, water-in-oil and oil-in-water emulsions. Colloids Surf. A, 2019, 571, 142–150.
Ying, T.; Su, J. F.; Jiang, Y. J.; Ke, Q. F.; Xu, H.A pre-wetting induced superhydrophilic/superlipophilic micro-patterned electrospun membrane with self-cleaning property for on-demand emulsified oily wastewater separation. J. Hazard. Mater., 2020, 384, 121475.
Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B.; Zhang, H. A.MOF-based hierarchical structures for solar-thermal clean water production. Adv. Mater., 2019, 31(17), 1808249.
Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F.Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater., 2016, 26(32), 5827–5834.
Xie, A. T.; Cui, J. Y.; Yang, J.; Chen, Y. Y.; Lang, J. H.; Li, C. X.; Yan, Y. S.; Dai, J. D.Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Sep. Purif. Technol., 2020, 236, 116273.
Du, J. C.; Zhou, C. L.; Yang, Z. J.; Cheng, J.; Shen, Y. Y.; Zeng, X. J.; Tan, L. X.; Dong, L. C.Conversion of solid Cu2(OH)2CO3 into HKUST-1 metal-organic frameworks: toward an under-liquid superamphiphobic surface. Surf. Coat. Technol., 2019, 363, 282–290.
Zhang, J.; Zhang, L.; Zhao, J. G.; Qu, W. S.; Wang, Z. X.A facile and mild strategy to fabricate an underwater superoleophobic and underoil superhydrophobic mesh with outstanding anti-viscous oil-fouling properties for switchable high viscosity oil/water separation. Green Chem., 2019, 21(18), 5080–5089.
Chen, J. H.; Zhou, Y.; Zhou, C. L.; Wen, X. F.; Xu, S. P.; Cheng, J.; Pi, P. H.A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation. Chem. Eng. J., 2019, 370, 1218–1227.
Chen, T.; Lewis, A.; Chen, Z. P.; Fan, X. F.; Radacsi, N.; Semiao, A. J. C.; Wang, H. T.; Huang, Y.Smart ZIF-L mesh films with switchable superwettability synthesized via a rapid energy-saving process. Sep. Purif. Technol., 2020, 240, 116647.
Zhu, H. Y.; Li, D. D.; Cai, M. J.; Yu, X. Q.; Zhang, Y. F.Sprayed superamphiphilic copper foams for long term recoverable oil-water separation. Surf. Coat. Technol., 2018, 334, 394–401.
Xiao, M. N.; Huang, Y. H.; Xu, A. L.; Zhang, T. T.; Zhan, C. D.; Hong, L. Z.On-demand oil-water separation by environmentally responsive cotton fabrics. ACS Omega, 2019, 4(7), 12333–12341.
Kang, L.; Wang, B.; Zeng, J. S.; Cheng, Z.; Li, J. P.; Xu, J.; Gao, W. H.; Chen, K. F.Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chem., 2020, 22(2), 504–512.
Luo, Y. Q.; Song, X.; Song, F.; Wang, X. L.; Wang, Y. Z.A fully bio-based composite coating with mechanical robustness and dual superlyophobicity for efficient two-way oil/water separation. J. Colloid Interface Sci., 2019, 549, 123–132.
Tie, L.; Li, J.; Liu, M. M.; Guo, Z. G.; Liang, Y. M.; Liu, W. M.Dual superlyophobic surfaces with superhydrophobicity and underwater superoleophobicity. J. Mater. Chem. A, 2018, 6(25), 11682–11687.
Tie, L.; Li, J.; Guo, Z. G.; Liang, Y. M.; Liu, W. M.Controllable preparation of multiple superantiwetting surfaces: from dual to quadruple superlyophobicity. Chem. Eng. J., 2019, 369, 463–469.
0
浏览量
69
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构