浏览全部资源
扫码关注微信
河南工业大学材料科学与工程学院,郑州 450001
*李一龙,E-mail: li-yilong@haut.edu.cn;郑红娟,E-mail: zhj6287@163.com
*李一龙,E-mail: li-yilong@haut.edu.cn;郑红娟,E-mail: zhj6287@163.com
纸质出版日期:2024-01-20,
收稿日期:2023-05-13,
录用日期:2023-06-28
扫 描 看 全 文
刘玉洁, 杨振华, 聂聪, 李一龙, 郑红娟. 聚碳酸酯/聚偏二氟乙烯/多壁碳纳米管/炭黑复合材料联用填料对导电网络的构建及材料电性能的影响研究. 高分子通报, 2024, 37(1), 105–113
Liu, Y. J.; Yang, Z. H.; Nie, C.; Li, Y. L.; Zheng, H. J. The effect of polycarbonate/poly(vinylidene fluoride)/multi-walled carbon nanotubes/carbon black composite co-fillers on the construction of conductive networks and the electrical properties of materials. Polym. Bull. (in Chinese), 2024, 37(1), 105–113
刘玉洁, 杨振华, 聂聪, 李一龙, 郑红娟. 聚碳酸酯/聚偏二氟乙烯/多壁碳纳米管/炭黑复合材料联用填料对导电网络的构建及材料电性能的影响研究. 高分子通报, 2024, 37(1), 105–113 DOI: 10.14028/j.cnki.1003-3726.2024.23.166.
Liu, Y. J.; Yang, Z. H.; Nie, C.; Li, Y. L.; Zheng, H. J. The effect of polycarbonate/poly(vinylidene fluoride)/multi-walled carbon nanotubes/carbon black composite co-fillers on the construction of conductive networks and the electrical properties of materials. Polym. Bull. (in Chinese), 2024, 37(1), 105–113 DOI: 10.14028/j.cnki.1003-3726.2024.23.166.
为了探究导电填料对导电网络的构建,以及不同种类和含量的导电填料对导电高分子复合材料(CPCs)电性能的影响,选用多壁碳纳米管(MWCNTs)和炭黑(CB)作为导电填料,聚碳酸酯(PC)和聚偏氟乙烯(PVDF)为高分子基体,通过熔融共混制备双逾渗结构的PC/PVDF共混物复合材料。通过选择性刻蚀PC,发现PC/PVDF质量比为40/60时形成共连续结构的CPCs;通过热力学计算预测和扫描电镜观察发现MWCNTs和CB两种填料均选择性分散在PVDF相,共连续结构和选择性分布导致CPCs的电逾渗阈值为0.03 wt%;在相同MWCNTs填料量下,CPCs的电性能随着CB掺杂量的增加而增加,这是因为掺杂的CB在导电网络中起到了桥接MWCNTs的作用;同时利用光学显微镜定量分析了导电填料在基体中的分布,随着CB含量的增加,共连续结构没有发生变化,但联用填料的团聚体面积呈现上升趋势。
In order to investigate the effect of conductive fillers on the construction of conductive network and the effect of different types and contents of conductive fillers on the electrical properties of conductive polymer composites (CPCs)
multi-walled carbon nanotubes (MWCNTs) and carbon black (CB) were selected as conductive fillers
and polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) were selected as polymer matrix. PC/PVDF blends with double percolation structure were prepared by melt blending. By selective etching of PC
it was found that CPCs with co-continuous structure were formed when the mass ratio of PC/PVDF was 40/60. It was found that MWCNTs and CB fillers were selectively dispersed in the PVDF phase by thermodynamic calculation and SEM observation. The co-continuous structure and selective distribution resulted in the electrical percolation threshold of 0.03 wt%. With the same amount of MWCNTs filler
the electrical properties of CPCs increased with the increase of CB content
because the doped CB played a role in bridging the MWCNTs in the conductive network. At the same time
the distribution of the conductive filler in the matrix was quantitatively analyzed by optical microscope. With the increase of CB content
the co-continuous structure did not change
but the aggregate area of the combined filler showed an increasing trend.
导电高分子复合材料选择性分布双逾渗结构填料联用
Conductive polymer compositesSelective distributionDouble-percolated structureFiller association
Dan, L.; Elias, A. L.Flexible and stretchable temperature sensors fabricated using solution-processable conductive polymer composites. Adv. Healthc. Mater., 2020, 9(16), 2000380.
Gao, J. F.; Wang, L.; Guo, Z.; Li, B.; Wang, H.; Luo, J. C.; Huang, X. W.; Xue, H. G.Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J., 2020, 381, 122778.
Li, X. F.; Zhuang, Z.; Qi, D.; Zhao, C. J.High sensitive and fast response humidity sensor based on polymer composite nanofibers for breath monitoring and non-contact sensing. Sens. Actuat. B, 2021, 330, 129239.
Zhang, S.; Huang, X. W.; Wang, D.; Xiao, W.; Huo, L. Y.; Zhao, M.; Wang, L.; Gao, J. F.Flexible and superhydrophobic composites with dual polymer nanofiber and carbon nanofiber network for high-perfor-mance chemical vapor sensing and oil/water separation. ACS Appl. Mater. Interfaces, 2020, 12(41), 47076–47089.
Choi, H. J.; Kim, M. S.; Ahn, D.; Yeo, S. Y.; Lee, S.Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci. Rep., 2019, 9, 6338.
Sushmita, K.; Formanek, P.; Krause, B.; Pötschke, P.; Bose, S.Distribution of carbon nanotubes in polycarbonate-based blends for electromagnetic interference shielding. ACS Appl. Nano Mater., 2022, 5(1), 662–677.
Yu, W. C.; Zhang, G. Q.; Liu, Y. H.; Xu, L.; Yan, D. X.; Huang, H. D.; Tang, J. H.; Xu, J. Z.; Li, Z. M.Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chem. Eng. J., 2019, 373, 556-564.
Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q. A.; Kim, J. K.Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2017, 9(10), 9059–9069.
Deng, H.; Lin, L.; Ji, M. Z.; Zhang, S. M.; Yang, M. B.; Fu, Q.Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci., 2014, 39(4), 627–655.
Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C.Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci., 2010, 35(3), 357–401.
Bal, S.; Samal, S. S.Carbon nanotube reinforced polymer composites—a state of the art. Bull. Mater. Sci., 2007, 30(4), 379–386.
Guo, Y. Q.; Ruan, K. P.; Shi, X. T.; Yang, X. T.; Gu, J. W.Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos. Sci. Technol., 2020, 193, 108134.
Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T.Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382(6586), 54–56.
Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M.Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584), 678–680.
Salehiyan, R.; Nofar, M.; Ray, S. S.; Ojijo, V.Kinetically controlled localization of carbon nanotubes in polylactide/poly(vinylidene fluoride) blend nanocomposites and their influence on electromagnetic interference shielding, electrical conductivity, and rheological properties. J. Phys. Chem. C, 2019, 123(31), 19195–19207.
Li, Y. L.; Pionteck, J.; Pötschke, P.; Voit, B.Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites. Mater. Des., 2020, 187, 108383.
Mao, C.; Zhu, Y. T.; Jiang, W.Design of electrical conductive composites: Tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl. Mater. Interfaces, 2012, 4(10), 5281–5286.
Huang, J. R.; Mao, C.; Zhu, Y. T.; Jiang, W.; Yang, X. D.Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon, 2014, 73, 267–274.
Zhao, X. W.; Wang, H. T.; Fu, Z. A.; Li, Y. J.Enhanced interfacial adhesion by reactive carbon nanotubes: New route to high-performance immiscible polymer blend nanocomposites with simultaneously enhanced toughness, tensile strength, and electrical conductivity. ACS Appl. Mater. Interfaces, 2018, 10(10), 8411–8416.
Huang, J. R.; Fan, J. F.; Cao, L. M.; Xu, C. H.; Chen, Y. K.A novel strategy to construct co-continuous PLA/NBR thermoplastic vulcanizates: Metal-ligand coordination-induced dynamic vulcanization, balanced stiffness-toughness and shape memory effect. Chem. Eng. J., 2020,385, 123828.
Ma, P. C.; Liu, M. Y.; Zhang, H.; Wang, S. Q.; Wang, R.; Wang, K.; Wong, Y. K.; Tang, B. Z.; Hong, S. H.; Paik, K. W.; Kim, J. K.Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl. Mater. Interfaces, 2009, 1(5), 1090–1096.
Ke, K.; Pötschke, P.; Wiegand, N.; Krause, B.; Voit, B.Tuning the network structure in poly(vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: Toward improvements of conductivity and piezoresistive sensitivity. ACS Appl. Mater. Interfaces, 2016, 8(22), 14190–14199.
Li, Y.; Zheng, Y.; Pionteck, J.; Pötschke, P.; Voit, B. Tuning the structure and performance of bulk and porous vapor sensors based on co-continuous carbon nanotube-filled blends of poly(vinylidene fluoride) and polycarbonates by varying melt viscosity. ACS Appl. Mater. Interfaces, 2020, 12(40), 45404–45419.
Li, L.; Zhang, M.; Ruan, W. Studies on synergistic effect of CNT and CB nanoparticles on PVDF. Polym. Compos., 2015, 36(12), 2248–2254.
Park, J. S.; Lee, S. M.; Joo, B. S.; Jang, H.The effect of material properties on the stick-slip behavior of polymers: A case study with PMMA, PC, PTFE, and PVC. Wear, 2017, 378-379, 11–16.
Kim, J. H.; Hong, J. S.; Ahn, K. H.Design of electrical conductive poly(lactic acid)/carbon black composites by induced particle aggregation. J. Appl. Polym. Sci., 2020, 137(42), 49295.
Kasaliwal, G. R.; Göldel, A.; Pötschke, P.; Heinrich, G.Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer, 2011, 52(4), 1027–1036.
Zhang, R.; Baxendale, M.; Peijs, T.Universal resistivity–strain dependence of carbon nanotube/polymer composites. Phys. Rev. B, 2007, 76(19), 195433.
0
浏览量
57
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构