浏览全部资源
扫码关注微信
1..中国石油集团工程材料研究院有限公司,西安 710077
2..长庆油田公司第六采气厂,西安 710018
3..长庆油田公司第一采油厂,延安 716009
*许辉,E-mail: xuhui5@cnpc.com.cn
纸质出版日期:2024-01-20,
收稿日期:2023-06-03,
录用日期:2023-06-29
扫 描 看 全 文
许辉, 方柳亚, 段小鹏, 王庆, 樊治海, 白小亮, 蔡克.聚2,7-二(氮咔唑基)-9,9-二甲基芴合成及CO2吸附性能应用. 高分子通报, 2024, 37(1), 89–95
Xu, H.; Fang, L. Y.; Duan, X. P.; Wang, Q.; Fan, Z. H.; Bai, X. L.; Cai, K. Synthesis and CO2 adsorption of 9,9'-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(9H-carbazole) polymer. Polym. Bull. (in Chinese), 2024, 37(1), 89–95
许辉, 方柳亚, 段小鹏, 王庆, 樊治海, 白小亮, 蔡克.聚2,7-二(氮咔唑基)-9,9-二甲基芴合成及CO2吸附性能应用. 高分子通报, 2024, 37(1), 89–95 DOI: 10.14028/j.cnki.1003-3726.2024.23.189.
Xu, H.; Fang, L. Y.; Duan, X. P.; Wang, Q.; Fan, Z. H.; Bai, X. L.; Cai, K. Synthesis and CO2 adsorption of 9,9'-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(9H-carbazole) polymer. Polym. Bull. (in Chinese), 2024, 37(1), 89–95 DOI: 10.14028/j.cnki.1003-3726.2024.23.189.
报道一种新的、高效的方法合成2
7-二(氮咔唑基)-9
9-二甲基芴(9
9'-(9
9-dimethyl-9
H
-fluorene-2
7-diyl)bis(9
H
-carbazole),MFC),并以该物质为聚合单体,以FeCl
3
为促进剂,在室温下聚合得到聚2
7-二(氮咔唑基)-9
9-二甲基芴(MFC-CMP-1)。之后对该聚合物进行性质表征,包括形貌、热稳定性、孔结构等,并进行多种气体(N
2
、CH
4
、CO
2
)的吸附试验。结果表明该材料对CO
2
表现出良好的吸附性能,其吸附量达到50.4 cm
3
/g (0.1 MPa和273 K条件下),且吸附选择性良好。这对于设计并合成高效的气体吸附剂、二氧化碳捕集利用和储存相关应用,具有一定的参考价值。
9
9'-(9
9-Dimethyl-9
H
-fluorene-2
7-diyl)bis(9
H
-carbazole) (MFC) was synthesized with a new and efficient strategy. Then
the porous organic polymer (MFC-CMP-1) with FeCl
3
as the accelerator was obtained by self-polymerization at room temperature with MFC as the reaction monomer. The characteristics of MFC-CMP-1 (including morphology
thermostability and pore structure) were disclosed and used as an adsorbent to implement the gas (N
2
CH
4
CO
2
) capture tests. We were delighted to find that MFC-CMP-1 displayed excellent adsorptive capacity (50.4 cm
3
/g under 0.1 MPa
273 K) and selectivity for CO
2
. This research could provide a rational principle for designing
synthesis of efficient adsorbent
and is benefit for the development of carbon capture
utilization and storage.
多孔有机聚合物咔唑基二氧化碳吸附
Porous organic polymerCarbazolylCO2 adsorption
Wang, H.; Jiang, D. N.; Huang, D. L.; Zeng, G.; Xu, P.; Lai, C.; Chen, M.; Cheng, M.; Zhang, C.; Wang, Z. W.Covalent triazine frameworks for carbon dioxide capture. J. Mater. Chem. A,2019, 7(40), 22848–22870.
Li, L.; Liu, Y.; Yang, X.; Yu, X.; Fang, Y.; Li, Q.; Jin, P.; Tang, C.Ambient carbon dioxide capture using boron-rich porous boron nitride: a theoretical study. ACS Appl. Mater. Interfaces,2017, 9(18), 15399–15407.
Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y.; Huang, L.; Gao, Y. S.; Wang, Z.; Jo, C.; Wang, Q.; Wang, L. D.; Liu, Y. F.; Louis, B.; Scott, J.; Roger, A. C.; Amal, R.; He, H.; Park, S. E.Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev., 2020, 49(23), 8584–8686.
Pardakhti, M.; Jafari, T.; Tobin, Z. M.; Dutta, B.; Moharreri, E.; Shemshaki, N. S.; Suib, S.; Srivastava, R.Trends in solid adsorbent materials development for CO2 capture. ACS Appl. Mater. Interfaces,2019, 11(38), 34533–34559.
Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.; Brown, S.; Fennell, P. S.; Fuss, S.; Galindo, A.; Hackett, L. A.; Hallett, J. P.; Herzog, H. J.; Jackson, G.; Kemper, J.; Krevor, S.; Maitland, G. C.; Matuszewski, M.; Metcalfe, I. S.; Petit, C.; Puxty, G.; Reimer, J.; Reiner, D. M.; Rubin, E. S.; Scott, S. A.; Shah, N.; Smit, B.; Martin Trusler, J. P.; Webley, P.; Wilcox, J.; Mac Dowell, N.Carbon capture and storage (CCS): the way forward. Energy Environ. Sci., 2018, 11(5), 1062–1176.
Zhou, C. G.; Yu, S. N.; Ma, K.; Liang, B.; Tang, S. Y.; Liu, C. J.; Yue, H. R.Amine-functionalized mesoporous monolithic adsorbents for post-combustion carbon dioxide capture. Chem. Eng. J., 2021, 413, 127675.
Min, K.; Choi, W.; Kim, C.; Choi, M.Rational design of the polymeric amines in solid adsorbents for postcombustion carbon dioxide capture. ACS Appl. Mater. Interfaces, 2018, 10(28), 23825–23833.
Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R.Carbon dioxide capture in metal-organic frameworks. Chem. Rev., 2012, 112(2), 724–781.
Lyu, H.; Li, H. Z.; Hanikel, N.; Wang, K. Y.; Yaghi, O. M.Covalent organic frameworks for carbon dioxide capture from air. J. Am. Chem. Soc., 2022, 144(28), 12989–12995.
Zou, L. F.; Sun, Y. J.; Che, S.; Yang, X. Y.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; Perry, Z.; Zhou, H. C.Porous organic polymers for post-combustion carbon capture. Adv. Mater., 2017, 29(37), 1700229.
Sekizkardes, A. K.; Wang, P.; Hoffman, J.; Budhathoki, S.; Hopkinson, D.Amine-functionalized porous organic polymers for carbon dioxide capture. Mater. Adv., 2022, 3(17), 6668–6686.
Wen, W. Q.; Shuttleworth, P. S.; Yue, H. B.; Fernández-Blázquez, J. P.; Guo, J. W.Exceptionally stable microporous organic frameworks with rigid building units for efficient small gas adsorption and separation. ACS Appl. Mater. Interfaces, 2020, 12(6), 7548–7556.
Dey, S.; Bhunia, A.; Esquivel, D.; Janiak, C.Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO2 adsorption. J. Mater. Chem. A, 2016, 4(17), 6259–6263.
Xu, H.; Li, X.; Hao, H. M.; Dong, X. Y.; Sheng, W. L.; Lang, X. J.Designing fluorene-based conjugated microporous polymers for blue light-driven photo-catalytic selective oxidation of amines with oxygen. Appl. Catal. B, 2021, 285, 119796.
Sadak, A. E.; Karakuş, E.; Chumakov, Y. M.; Dogan, N. A.; Yavuz, C. T.Triazatruxene-based ordered porous polymer: High capacity CO2, CH4, and H2 capture, heterogeneous suzuki-miyaura catalytic coupling, and thermoelectric properties. ACS Appl. Energy Mater., 2020, 3(5), 4983–4994.
Indira, V.; Abhitha, K.A review on recent developments in Zeolite A synthesis for improved carbon dioxide capture: implications for the water-energy nexus. Energy Nexus, 2022, 7, 100095.
Sun, H. X.; Yang, B. L.; Li, A.Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake. Chem. Eng. J., 2019, 372, 65–73.
Abdelmoaty, Y. H.; Tessema, T. D.; Norouzi, N.; El-Kadri, O. M.; Turner, J. B. M.; El-Kaderi, H. M.Effective approach for increasing the heteroatom doping levels of porous carbons for superior CO2 capture and separation performance. ACS Appl. Mater. Interfaces, 2017, 9(41), 35802–35810.
Dilokekunakul, W.; Teerachawanwong, P.; Klomkliang, N.; Supasitmongkol, S.; Chaemchuen, S.Effects of nitrogen and oxygen functional groups and pore width of activated carbon on carbon dioxide capture: temperature dependence. Chem. Eng. J., 2020, 389, 124413.
Ashirov, T.; Song, K. S.; Coskun, A.Salt-templated solvothermal synthesis of dioxane-linked three-dimensional nanoporous organic polymers for carbon dioxide and iodine capture. ACS Appl. Nano Mater., 2022, 5(10), 13711–13719.
Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C. G.; Han, B. H.Microporous polycarbazole with high specific surface area for gas storage and separation. J. Am. Chem. Soc., 2012, 134(14), 6084–6087.
0
浏览量
45
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构