浏览全部资源
扫码关注微信
北京市科学技术研究院分析测试研究所(北京市理化分析测试中心),有机材料检测技术与质量评价北京市重点实验室,北京 100089
*邹涛,E-mail: zoutao@bcpca.ac.cn
纸质出版日期:2024-03-20,
收稿日期:2023-06-27,
录用日期:2023-07-28
扫 描 看 全 文
刘卫卫, 陈宇迪, 韩倚天, 李亚莉, 赵瑾, 郭姝, 邹涛. 动态力学分析技术在类玻璃高分子性能表征中的应用. 高分子通报, 2024, 37(3), 328–337
Liu, W. W.; Chen, Y. D.; Han, Y. T.; Li, Y. L.; Zhao, J.; Guo, S.; Zou, T. Application of dynamic mechanical analysis in characterization of vitrimers. Polym. Bull. (in Chinese), 2024, 37(3), 328–337
刘卫卫, 陈宇迪, 韩倚天, 李亚莉, 赵瑾, 郭姝, 邹涛. 动态力学分析技术在类玻璃高分子性能表征中的应用. 高分子通报, 2024, 37(3), 328–337 DOI: 10.14028/j.cnki.1003-3726.2024.23.216.
Liu, W. W.; Chen, Y. D.; Han, Y. T.; Li, Y. L.; Zhao, J.; Guo, S.; Zou, T. Application of dynamic mechanical analysis in characterization of vitrimers. Polym. Bull. (in Chinese), 2024, 37(3), 328–337 DOI: 10.14028/j.cnki.1003-3726.2024.23.216.
类玻璃高分子因结合了热塑性材料可塑形变的能力以及热固性材料永久定型的特征,目前在高分子研究领域备受青睐。采用动态力学分析技术可深入研究此类材料的动态黏弹性和流变行为,建立类玻璃高分子交联网络、动态键等结构与材料性能间的关系。本文重点阐述动态力学分析技术在类玻璃高分子的动态黏弹性、交联网络结构、流变行为、膨胀及形状记忆行为等方面的表征应用,为此类材料的结构设计、性能评价以及加工应用等从测试表征角度提供参考。
Vitrimers are booming in macromolecule research field because of the combination of the plasticity of thermoplastic materials and the permanent properties of thermosetting materials. The dynamic viscoelastic and rheological behaviors of these materials can be studied in-depth by dynamic mechanics analysis
contributing to establishing the relationships between vitrimer structures
such as crosslinking networks and dynamic bonds
and material properties. In this short review
applications of dynamic mechanical analysis in the detection of the dynamic viscoelasticity
cross-linking network structures
rheological behavior
expansion and shape memory behavior of vitrimers are summarized
providing a reference for the structural design
performance characterization and processing applications of such materials.
动态力学分析类玻璃高分子动态黏弹性流变行为形状记忆
Dynamic mechanical analysisVitrimersDynamic ViscoelasticityRheological behaviorShape memory
D. Montarnal,; M. Capelot,; F. Tournilhac,; L. Leibler,Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058), 965–968.
周立生, 刘剑侠, 吴淑新, 陈国辉, 杨士山, 杨立波. 类玻璃高分子材料的研究进展. 材料导报, 2020, 34(S01), 585–591.
M. Capelot,; D. Montarnal,; F. Tournilhac,; L. Leibler,Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc., 2012, 134(18), 7664–7667.
M. Guerre,; C. Taplan,; J. M. Winne,; F. E. Du Prez,Vitrimers: directing chemical reactivity to control material properties. Chem. Sci., 2020, 11(19), 4855–4870.
李超, 吴宇超, 陈婷婷, 邱仁辉, 刘文地. 类玻璃高分子: 兼具热固性与热塑性的可逆交联聚合物. 材料科学与工程学报, 2023, 41(1), 154–168.
Z. W. Zhu,; S. West,; H. X. Chen,; G. H. Lai,; S. Uenuma,; K. Ito,; M. Kotaki,; H. J. Sue,Mechanically interlocked vitrimer based on polybenzoxazine and polyrotaxane. ACS Appl. Polym. Mater., 2023, 5(6), 3971–3978.
L. A. Yue,; Y. L. Su,; M. Z. Li,; L. X. Yu,; S. M. Montgomery,; X. H. Sun,; M. G. Finn,; W. R. Gutekunst,; R. Ramprasad,; H. J. Qi,One-pot synthesis of depolymerizable δ-lactone based vitrimers. Adv. Mater., 2023, 35(29), 2300954.
D. J. Plazek,; V. M. O' Rourke,Viscoelastic behavior of low molecular weight polystyrene. J. Polym. Sci. A-2 Polym. Phys., 1971, 9(2), 209–243.
W. Denissen,; J. M. Winne,; F. E. Du Prez,Vitrimers: Permanent organic networks with glass-like fluidity. Chem. Sci., 2016, 7(1), 30–38.
W. Denissen,; G. Rivero,; R. Nicolaÿ,; L. Leibler,; J. M. Winne,; F. E. Du Prez,Vinylogous urethane vitrimers. Adv. Funct. Mater., 2015, 25(16), 2451–2457.
C. F. He,; S. W. Shi,; D. Wang,; B. A. Helms,; T. P. Russell,Poly(oxime-ester) vitrimers with catalyst-free bond exchange. J. Am. Chem. Soc., 2019, 141(35), 13753–13757.
何超, 程飞, 周密, 杨昌跃. 动态力学分析在高分子材料中的应用. 实验科学与技术, 2020, 18(4), 27–32.
M. Cristea,; D. Ionita,; M. M. Iftime,Dynamic mechanical analysis investigations of PLA-based renewable materials: how are they useful?Materials, 2020, 13(22), 5302.
W. Schlesing,; M. Buhk,; M. Osterhold,Dynamic mechanical analysis in coatings industry. Prog. Org. Coat., 2004, 49(3), 197–208.
R. H. Aguirresarobe,; S. Nevejans,; B. Reck,; L. Irusta,; H. Sardon,; J. M. Asua,; N. Ballard,Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci., 2021, 114, 101362.
A. Erice,; A. Ruiz de Luzuriaga,; J. M. Matxain,; F. Ruipérez,; J. M. Asua,; H. J. Grande,; A. Rekondo,Reprocessable and recyclable crosslinked poly(urea-urethane)s based on dynamic amine/urea exchange. Polymer, 2018, 145, 127–136.
C. F. He,; P. R. Christensen,; T. J. Seguin,; E. A. Dailing,; B. M. Wood,; R. K. Walde,; K. A. Persson,; T. P. Russell,; B. A. Helms,Conformational entropy as a means to control the behavior of poly(diketoenamine) vitrimers in and out of equilibrium. Angew. Chem. Int. Ed., 2020, 59(2), 735–739.
C. F. He,; S. W. Shi,; X. F. Wu,; T. P. Russell,; D. Wang,Atomic force microscopy nanomechanical mapping visualizes interfacial broadening between networks due to chemical exchange reactions. J. Am. Chem. Soc., 2018, 140(22), 6793–6796.
Y. E. Jiang,; S. A. Wang,; W. F. Dong,; T. Kaneko,; M. Q. Chen,; D. J. Shi,High-strength, degradable and recyclable epoxy resin based on imine bonds for its carbon-fiber-reinforced composites. Materials, 2023, 16(4), 1604.
M. Bergoglio,; D. Reisinger,; S. Schlögl,; T. Griesser,; M. Sangermano,Sustainable bio-based UV-cured epoxy vitrimer from castor oil. Polymers, 2023, 15(4), 1024.
F. Gamardella,; S. De la Flor,; X. Ramis,; A. Serra,Recyclable poly(thiourethane) vitrimers with high Tg. Influence of the isocyanate structure. React. Funct. Polym., 2020, 151, 104574.
F. Cuminet,; S. Lemouzy,; É. Dantras,; É. Leclerc,; V. Ladmiral,; S. Caillol,From vineyards to reshapable materials: α-CF2 activation in 100% resveratrol-based catalyst-free vitrimers. Polym. Chem., 2023, 14(12), 1387–1395.
B. Zhang,; C. Yuan,; W. Zhang,; M. L. Dunn,; H. J. Qi,; Z. J. Liu,; K. Yu,; Q. Ge,Recycling of vitrimer blends with tunable thermomechanical properties. RSC Adv., 2019, 9(10), 5431–5437.
W. B. Li,; L. H. Xiao,; J. R. Huang,; Y. G. Wang,; X. A. Nie,; J. Chen,Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: synthesis and structure-property relationship. Compos. Sci. Technol., 2022, 227, 109575.
H. H. Tong,; Y. K. Chen,; Y. X. Weng,; S. D. Zhang,Biodegradable-renewable vitrimer fabrication by epoxidized natural rubber and oxidized starch with robust ductility and elastic recovery. ACS Sustain. Chem. Eng., 2022, 10(24), 7942–7953.
Y. Yang,; E. M. Terentjev,; Y. Wei,; Y. Ji,Solvent-assisted programming of flat polymer sheets into recon-figurable and self-healing 3D structures. Nat. Commun., 2018, 9, 1906.
S. B. Ji,; W. Cao,; Y. Yu,; H. P. Xu,Visible-light-induced self-healing diselenide-containing polyurethane elastomer. Adv. Mater., 2015, 27(47), 7740–7745.
C. Y. Bao,; Y. J. Jiang,; H. Y. Zhang,; X. Y. Lu,; J. Q. Sun,Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines. Adv. Funct. Mater., 2018, 28(23), 1800560.
K. Zhao,; Y. P. Wang,; J. Y. Guo,; S. F. Zhang,; W. B. Niu,Photonic vitrimer-based electronics with self-healing and ultrastable visual-digital outputs for wireless strain sensing. Chem. Eng. J., 2022, 450, 138285.
F. L. Meng,; M. O. Saed,; E. M. Terentjev,Rheology of vitrimers. Nat. Commun., 2022, 13(1), 5753.
J. H. Shin,; M. B. Yi,; T. H. Lee,; H. J. Kim,Rapidly deformable vitrimer epoxy system with supreme stress-relaxation capabilities via coordination of solvate ionic liquids. Adv. Funct. Mater., 2022, 32(51), 2207329.
N. Tratnik,; N. R. Tanguy,; N. Yan,Recyclable, self-strengthening starch-based epoxy vitrimer facilitated by exchangeable disulfide bonds. Chem. Eng. J., 2023, 451, 138610.
C. Di Mauro,; S. Malburet,; A. Genua,; A. Graillot,; A. Mija,Sustainable series of new epoxidized vegetable oil-based thermosets with chemical recycling properties. Biomacromolecules, 2020, 21(9), 3923–3935.
F. Guerrero,; X. Ramis,; S. De la Flor,; À. Serra,Preparation and characterization of a series of self-healable bio-based poly(thiourethane) vitrimer-like materials. Polymers, 2023, 15(6), 1583.
B. R. Elling,; W. R. Dichtel,Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable?ACS Cent. Sci., 2020, 6(9), 1488–1496.
C. X. Shi,; Z. Zhang,; M. Scoti,; X. Y. Yan,; E. Y. X. Chen,Endowing polythioester vitrimer with intrinsic crystallinity and chemical recyclability. ChemSusChem, 2023, 16(8), e202300008.
S. Dhers,; G. Vantomme,; L. Avérous,A fully bio-based polyimine vitrimer derived from fructose. Green Chem., 2019, 21(7), 1596–1601.
司鸿玮, 陈茂, 周琳, 宋丽贤, 康明, 赵秀丽. 可交换酯键的密度对环氧类玻璃高分子动态性能的影响. 西南科技大学学报, 2020, 35(3), 1–7.
X. Z. Su,; Z. Zhou,; J. C. Liu,; J. Luo,; R. Liu,A recyclable vanillin-based epoxy resin with high-performance that can compete with DGEBA. Eur. Polym. J., 2020, 140, 110053.
H. K. Yang,; C. F. He,; T. P. Russell,; D. Wang,Epoxy-polyhedral oligomeric silsesquioxanes (POSS) nanocomposite vitrimers with high strength, toughness, and efficient relaxation. Giant, 2020, 4, 100035.
王天娇, 李丽英, 汪东, 柯红军, 许晓洲, 王国勇. 光响应形状记忆聚合物的研究进展. 化工新型材料, 2023, 51(6), 235–240.
H. Kim,; I. Cha,; Y. Yoon,; B. J. Cha,; J. Yang,; Y. D. Kim,; C. Song,Facile mechanochemical synthesis of malleable biomass-derived network polyurethanes and their shape-memory applications. ACS Sustain. Chem. Eng., 2021, 9(20), 6952–6961.
W. Chen,; Y. Y. Zhou,; Y. Li,; J. Sun,; X. Q. Pan,; Q. Yu,; N. C. Zhou,; Z. B. Zhang,; X. L. Zhu,Shape-memory and self-healing polyurethanes based on cyclic poly(ε-caprolactone). Polym. Chem., 2016, 7(44), 6789–6797.
Z. H. Yang,; Q. H. Wang,; T. M. Wang,Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl. Mater. Interfaces, 2016, 8(33), 21691–21699.
P. Z. Li,; X. T. Zhang,; Q. Yang,; P. J. Gong,; C. B. Park,; G. X. Li,Sustainable polyester vitrimer capable of fast self-healing and multiple shape-programming via efficient synthesis and configuration processing. J. Mater. Chem. A, 2023, 11(20), 10912–10926.
0
浏览量
171
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构