浏览全部资源
扫码关注微信
华东交通大学材料工程与科学学院,南昌 330013
*钟美玲,E-mail: zhongmei121987@163.com
纸质出版日期:2024-03-20,
收稿日期:2023-07-12,
录用日期:2023-09-19
扫 描 看 全 文
赵燕芳, 钟美玲,唐奥奇, 席荣祥, 彭梦霞, 甘德强, 张跃进. 基于PVA物理交联构建具有分级结构的一体化支架. 高分子通报, 2024, 37(3), 385–394
Zhao, Y. F.; Zhong, M. L.; Tang, A. Q.; Xi, R. X.; Peng, M. X.; Gan, D. Q.; Zhang, Y. J. An integrated poly(vinyl alcohol) (PVA) scaffold with hierarchical structure prepared by physical crosslinking. Polym. Bull. (in Chinese), 2024, 37(3), 385–394
赵燕芳, 钟美玲,唐奥奇, 席荣祥, 彭梦霞, 甘德强, 张跃进. 基于PVA物理交联构建具有分级结构的一体化支架. 高分子通报, 2024, 37(3), 385–394 DOI: 10.14028/j.cnki.1003-3726.2024.23.243.
Zhao, Y. F.; Zhong, M. L.; Tang, A. Q.; Xi, R. X.; Peng, M. X.; Gan, D. Q.; Zhang, Y. J. An integrated poly(vinyl alcohol) (PVA) scaffold with hierarchical structure prepared by physical crosslinking. Polym. Bull. (in Chinese), 2024, 37(3), 385–394 DOI: 10.14028/j.cnki.1003-3726.2024.23.243.
具有分级结构的界面组织(如肌腱-骨界面、骨-软骨界面等)在器官的正常发育和功能中扮演着极其重要的作用。其中,肌腱-骨界面组织是最为典型的界面组织之一。为此,本研究采用肌腱-骨界面组织的构建为模型,以明胶、聚乙烯醇(PVA)、羟基磷灰石(HAp)为原料,采用冻融循环技术结合逐层涂覆技术制备具有分级结构的仿肌腱-骨界面一体化支架。该支架由三个部分组成:(i)上层为未矿化的区域,以促进支架与肌腱的整合;(ii)中间层为具有矿物成分梯度和力学性能梯度的区域,以促进应力在肌腱和骨之间的转移;(iii)下层为具有较高力学性能的矿化区域,促进支架与骨的整合。采用红外光谱、力学性能测试、扫描电镜(SEM)、能谱分析(EDS)等手段对支架的结构和性能进行表征。结果表明,采用冻融循环技术可以通过物理交联获得PVA支架,且矿物量-力学,冷冻-解冻循环次数-力学的力学拉伸测试结果表明该支架从上层到下层的力学性能依次呈梯度增加。采用扫描电镜(SEM)观察了材料的整体微观结构,材料层与层之间完美融合,形成具有分级结构的一体化支架。最后,通过能谱分析(EDS)对支架的矿物质含量进行分析,结果表明该支架从上层到下层的矿物质含量依次从无到有,并呈梯度增加。这种仿生一体化支架的设计将在界面组织工程中具有极大的应用前景。
Hierarchical interfacial tissues (such as the tendon-bone interface
bone-cartilage interface
etc
.) play an extremely important role in maintaining the development and function of organs. The tendon-bone interface is one of the most typical interfacial tissues. Therefore
in this study
gelatin
poly(vinyl alcohol) (PVA) and hydroxyapatite (HAp) were mixed together
and the coating technology combined with freezing-thawing method was used to prepare the hierarchical integrated scaffold. The scaffold consisted of three regions: (i) the upper layer is an unmineralized area to facilitate the integration of the scaffold into the tendon; (ii) the intermediate layer is a zone with gradients of mineral composition and mechanical properties to facilitate stress transfer between tendon and bone; (iii) the lower layer is a mineralized area with high mechanical properties which promotes the integration of scaffolds and bones. The structure and properties of the scaffold were characterized by infrared spectroscopy
mechanical properties testing
scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The result showed that the PVA scaffold can be obtained by physical crosslinking using freeze-thaw cycle technology
and the mechanical tensile test results of mineral content-mechanics
freeze-thaw cycles-mechanics showed that the mechanical properties of the scaffold from the top to the bottom gradually increase. SEM was used to observe the overall microstructure of the material. The layers of the material fused perfectly
which formed an integrated scaffold with hierarchical structure. Finally
the mineral content of the scaffold was analyzed by EDS. The results showed that the mineral content of the scaffold increased gradually from the upper layer to the lower layer in a gradient manner. This kind of biomimetic scaffold will have great application prospect in interface tissue engineering.
聚乙烯醇物理交联分级结构冻融循环技术界面组织
Poly(vinyl alcohol)Physical crosslinkingHierarchical structureFreezing-thawing methodInterfacial tissues
G. M. Genin,; S. Thomopoulos,The tendon-to-bone attachment: Unification through disarray. Nat. Mater., 2017, 16(6), 607–608.
X. L. Niu,; N. Li,; Z. P. Du,; X. M. Li,Integrated gradient tissue-engineered osteochondral scaffolds: challenges, current efforts and future perspectives. Bioact. Mater., 2023, 20, 574–597.
Y. H. Zhong,; W. D. Gan,; L. Zhou,; Z. Z. Li,Research progress of tissue engineered bone in repairing bone defect. Int. J. Sci., 2020, 9(2), 46–48.
J. L. Cai,; J. J. Wang,; C. X. Sun,; J. W. Dai,; C. Zhang,Biomaterials with stiffness gradient for interface tissue engineering. Biomed. Mater., 2022, 17(6), 064103.
H. H. Lu,; S. Thomopoulos,Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng., 2013, 15, 201–226.
H. Zhao,; Z. D. Zeng,; L. Liu,; J. W. Chen,; H. T. Zhou,; L. L. Huang,; J. Huang,; H. Xu,; Y. Y. Xu,; Z. R. Chen,; Y. Wu,; W. L. Guo,; J. H. Wang,; J. Wang,; Z. Liu,Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale, 2018, 10(15), 6981–6991.
X. X. Li,; R. Y. Cheng,; Z. Y. Sun,; W. Su,; G. Q. Pan,; S. Zhao,; J. Z. Zhao,; W. G. Cui,Flexible bipolar nanofibrous membranes for improving gradient micro-structure in tendon-to-bone healing. Acta Biomater., 2017, 61, 204–216.
L. Rossetti,; L. A. Kuntz,; E. Kunold,; J. Schock,; K. W. Müller,; H. Grabmayr,; J. Stolberg-Stolberg,; F. Pfeiffer,; S. A. Sieber,; R. Burgkart,; A. R. Bausch,The microstructure and micromechanics of the tendon-bone insertion. Nat. Mater., 2017, 16(6), 664–670.
Y. J. No,; M. Castilho,; Y. Ramaswamy,; H. Zreiqat,Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration. Adv. Mater., 2020, 32(18), 1904511.
F. B. Sun,; X. D. Sun,; H. T. Wang,; C. X. Li,; Y. Zhao,; J. J. Tian,; Y. H. Lin,Application of 3D-printed, PLGA-based scaffolds in bone tissue engineering. Int. J. Mol. Sci., 2022, 23(10), 5831.
H. H. Lu,; S. F. El-Amin,; K. D. Scott,; C. T. Laurencin,Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.J. Biomed. Mater. Res. A, 2003, 64A(3), 465–474.
B. S. Kim,; E. J. Kim,; J. S. Choi,; J. H. Jeong,; C. H. Jo,; Y. W. Cho,Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J. Biomed. Mater. Res. A, 2014, 102(11), 4044–4054.
C. L. Zhu,; S. Pongkitwitoon,; J. C. Qiu,; S. Thomopoulos,; Y. N. Xia,Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Adv. Mater., 2018, 30(16), 1707306.
D. F. E. Ker,; D. Wang,; A. W. Behn,; E. T. H. Wang,; X. Zhang,; B. Y. Zhou,; Á. E. Mercado-Pagán,; S. Kim,; J. Kleimeyer,; B. Gharaibeh,; Y. Shanjani,; D. Nelson,; M. Safran,; E. Cheung,; P. Campbell,; Y. P. Yang,Functionally graded, bone- and tendon-like polyurethane for rotator cuff repair. Adv. Funct. Mater., 2018, 28(20), 1707107.
R. M. Sun,; J. Hu,; X. X. Shi,; J. Wang,; X. Y. Zheng,; Y. X. Zhang,; B. Han,; K. S. Xia,; Q. Gao,; C. G. Zhou,; L. Q. Mai,Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries. Adv. Funct. Mater., 2021, 31(42), 2104858.
X. Zhao,; Y. P. Liang,; Y. Huang,; J. H. He,; Y. Han,; B. L. Guo,Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater., 2020, 30(17), 1910748.
B. Chen,; Q. L. Chen,; S. H. Xiao,; J. S. Feng,; X. Zhang,; T. H. Wang,Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Sci. Adv., 2021, 7(48), eabi7233.
S. G. Jin,Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing. Chem. Asian J., 2022, 17(21), e202200595.
T. Shui,; M. F. Pan,; A. Li,; H. B. Fan,; J. P. Wu,; Q. Liu,; H. B. Zeng,Poly(vinyl alcohol) (PVA)-based hydrogel scaffold with isotropic ultratoughness enabled by dynamic amine-catechol interactions. Chem. Mater., 2022, 34(19), 8613–8628.
B. Ghorani,; B. Emadzadeh,; H. Rezaeinia,; S. J. Russell,Improvements in gelatin cold water solubility after electrospinning and associated physicochemical, functional and rheological properties. Food Hydrocoll., 2020, 104, 105740.
I. Lukin,; I. Erezuma,; L. Maeso,; J. Zarate,; M. F. Desimone,; T. H. Al-Tel,; A. Dolatshahi-Pirouz,; G. Orive,Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics, 2022, 14(6), 1177.
I. Steyaert,; H. Rahier,; S. Van Vlierberghe,; J. Olijve,; K. De Clerck,Gelatin nanofibers: analysis of triple helix dissociation temperature and cold-water-solubility. Food Hydrocoll., 2016, 57, 200–208.
R. Kumar,; S. Mohanty,Hydroxyapatite: A versatile bioceramic for tissue engineering application. J. Inorg. Organomet. Polym. Mater., 2022, 32(12), 4461–4477.
T. G. P. Galindo,; Y. D. Chai,; M. Tagaya,Hydroxyapatite nanoparticle coating on polymer for constructing effective biointeractive interfaces. J. Nanomater., 2019, 2019, 1–23.
T. H. Kim,; D. B. An,; S. H. Oh,; M. K. Kang,; H. H. Song,; J. H. Lee,Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors. Biomaterials, 2015, 40, 51–60.
Y. Chen,; J. Li,; J. W. Lu,; M. Ding,; Y. Chen,Synthesis and properties of poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test., 2022, 108, 107516.
R. Y. Wang,; X. X. Chen,; Y. X. Yang,; Y. L. Xu,; Q. Zhang,; Y. F. Zhang,; Y. L. Cheng,Imidazolidinyl urea reinforced polyacrylamide hydrogels through the formation of multiple hydrogen bonds. React. Funct. Polym., 2022, 172, 105183.
M. W. Sun,; Y. J. Wang,; L. H. Yao,; Y. Li,; Y. X. Weng,; D. Qiu,Fabrication and characterization of gelatin/polyvinyl alcohol composite scaffold. Polymers, 2022, 14(7), 1400.
S. Gupta,; S. Goswami,; A. Sinha,A combined effect of freeze: thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed. Mater., 2012, 7(1), 015006.
杨玉军, 陈宁, 王琪. 聚乙烯醇/明胶/纳米羟基磷灰石复合材料热塑加工性能研究. 高分子学报, 2014, (7), 956–962.
S. J. Fu,; Y. J. Lan,; G. Y. Wang,; D. S. Bao,; B. Qin,; Q. Zheng,; H. A. Liu,; V. K. W. Wong,External stimulation: a potential therapeutic strategy for tendon-bone healing. Front. Bioeng. Biotechnol., 2023, 11, 1150290.
滕淑华, 史京京, 王颖, 彭必先, 陈丽娟. 明胶中α组分含量对明胶/羟基磷灰石复合材料力学性能的影响. 高分子学报, 2006, (1), 65–69.
S. Afewerki,; N. Bassous,; S. Harb,; C. Palo-Nieto,; G. U. Ruiz-Esparza,; F. R. Marciano,; T. J. Webster,; A. S. A. Furtado,; A. O. Lobo,Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine, 2020, 24, 102143.
I. Ielo,; G. Calabrese,; G. De Luca,; S. Conoci,Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int. J. Mol. Sci., 2022, 23(17), 9721.
0
浏览量
90
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构