浏览全部资源
扫码关注微信
1..宁德师范学院医学院,福建省毒物与药物毒理学重点实验室,宁德 352100
2..东北大学分子科学与工程研究所,沈阳 110819
3..厦门海洋职业技术学院,厦门市智慧渔业重点实验室,厦门 361100
*艾克拜尔·热合曼,E-mail: akbarphd@126.com
纸质出版日期:2024-01-20,
收稿日期:2023-08-18,
录用日期:2023-10-18
扫 描 看 全 文
沈成万, 段楠, 郭团玉, 张朝辉, 林晓璇, 欧阳溢凡, 王基伟, 艾克拜尔·热合曼. 基于物理交联和π-π共轭协同作用的新型脂肪族聚碳酸酯类弹性体制备及自修复性能研究. 高分子通报, 2024, 37(1), 114–126
Shen, C. W.; Duan, N.; Guo, T. Y.; Zhang, C. H.; Lin X. X.; OuYang, Y. F.; Wang, J. W.; Reheman, A. Preparation and self-healing properties of new aliphatic polycarbonate elastomers with physical crosslinking and π-π-conjugated synergy. Polym. Bull. (in Chinese), 2024, 37(1), 114–126
沈成万, 段楠, 郭团玉, 张朝辉, 林晓璇, 欧阳溢凡, 王基伟, 艾克拜尔·热合曼. 基于物理交联和π-π共轭协同作用的新型脂肪族聚碳酸酯类弹性体制备及自修复性能研究. 高分子通报, 2024, 37(1), 114–126 DOI: 10.14028/j.cnki.1003-3726.2024.23.288.
Shen, C. W.; Duan, N.; Guo, T. Y.; Zhang, C. H.; Lin X. X.; OuYang, Y. F.; Wang, J. W.; Reheman, A. Preparation and self-healing properties of new aliphatic polycarbonate elastomers with physical crosslinking and π-π-conjugated synergy. Polym. Bull. (in Chinese), 2024, 37(1), 114–126 DOI: 10.14028/j.cnki.1003-3726.2024.23.288.
利用物理交联相互作用开发具有自修复性能的弹性体是提高材料使用寿命有效方法之一,然而,这类弹性体的机械性能与自修复性能是相互矛盾的。在这项工作中,首先制备了5-甲基-5-苄氧羰基二亚甲基碳酸酯(MBC)和5-甲基-5-(4-硝基)苄氧羰基二亚甲基碳酸酯(MNBC),然后利用mPEG与MBC和MNBC通过开环聚合获得目标材料,并确定了弹性体的最佳制备工艺。其次,采用红外、核磁和示差扫描量热分析(DSC)分别测试了材料的化学结构和热行为,并探讨了脂肪族聚碳酸酯形成凝胶的交联机理,通过改变引发剂与单体比例,单体之间的比例和反应温度来调控此类材料由线性聚合物向网络弹性体的转变。同时,利用平衡溶胀法、动态热力学分析等手段表征了弹性体溶胀行为、凝胶含量、溶胀率、含水量和力学性能。此外,通过弯曲实验,验证了弹性体具有一定的形状记性性能,并且通过划痕实验验证了弹性体具有良好的室温自修复性能,该研究也为弹性体后期的应用打下良好的性能基础。
To improve the life of materials
using physical cross-linking interaction to develop self-healing elastomers is one of the effective ways. However
the mechanical properties and self-healing properties of the elastomers are contradictory. In this study
5-methyl-5-benzyloxycarbonyl dimethylene carbonate (MBC) and 5-methyl-5-(4-nitro) benzyloxycarbonyl dimethylene carbonate (MNBC) were first prepared
and then the target materials were obtained by ring-opening polymerization with mPEG and MBC and MNBC
and the best preparation process was determined. The chemical structure and thermal behavior of aliphatic monomers and polycarbonate were characterized by infrared spectroscopy
nuclear magnetic resonance spectroscopy and differential scanning calorimetry (DSC). The crosslinking mechanism of aliphatic polycarbonate forming gel was discussed. The transition from linear polymer to network elastomer is controlled by adjusting the ratio of initiator to monomer
the ratio between monomers and the reaction temperature. Meanwhile
the swelling behavior
gel content
swelling rate
water content and mechanical properties of the elastomer were characterized by means of equilibrium swelling method and dynamic thermodynamic analysis. In addition
the bending experiment verifies that the elastomer has a certain shape memory performance
and the scratch experiment verifies that the elastomer has a good room temperature Self-healing performance.
弹性体脂肪族聚碳酸酯机械强度自修复
ElastomerAliphatic polycarbonateMechanical strengthSelf-healing
Winey, K. I.Designing tougher elastomers with ionomers. Science, 2017, 358(6362), 449–450.
Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T.Toughening elastomers using mussel-inspired iron-catechol complexes. Science, 2017, 358(6362), 502–505.
Hu, Y.; Du, Z. S.; Deng, X. L.; Wang, T.; Yang, Z. H.; Zhou, W. Y.; Wang, C. Y.Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules, 2016, 49(15), 5660–5668.
He, J. H.; Shi, M. T.; Liang, Y. P.; Guo, B. L.Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J., 2020, 394, 124888.
Tang, L.; Zhang, D.; Gong, L. A.; Zhang, Y. X.; Xie, S. W.; Ren, B. P.; Liu, Y. L.; Yang, F. Y.; Zhou, G. Y.; Chang, Y.; Tang, J. X.; Zheng, J. E.Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels. Macromolecules, 2019, 52(24), 9512–9525.
Zaragoza, J.; Fukuoka, S.; Kraus, M.; Thomin, J.; Asuri, P.Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites. Nanomaterials, 2018, 8(11), 882.
Fan, H. L.; Wang, L.; Feng, X. D.; Bu, Y. Z.; Wu, D. C.; Jin, Z. X.Supramolecular hydrogel formation based on tannic acid. Macromolecules, 2017, 50(2), 666–676.
Wang, F.; Weiss, R. A.Thermoresponsive supra-molecular hydrogels with high fracture toughness. Macromolecules, 2018, 51(18), 7386–7395.
Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S.Shape memory polymers: past, present and future developments. Prog. Polym. Sci., 2015, 49–50, 3–33.
de las Heras Alarcón, C.; Pennadam, S.; Alexander, C.Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev., 2005, 34(3), 276–285.
Patrick, J. F.; Robb, M. J.; Sottos, N. R.; Moore, J. S.; White, S. R.Polymers with autonomous life-cycle control. Nature, 2016, 540(7633), 363–370.
Odom, S. A.; Chayanupatkul, S.; Blaiszik, B. J.; Zhao, O.; Jackson, A. C.; Braun, P. V.; Sottos, N. R.; White, S. R.; Moore, J. S.A self-healing conductive ink. Adv. Mater., 2012, 24(19), 2578–2581.
Muhammad, N. Z.; Shafaghat, A.; Keyvanfar, A.; Abd Majid, M. Z.; Ghoshal, S. K.; Mohammadyan Yasouj, S. E.; Ganiyu, A. A.; Samadi Kouchaksaraei, M.; Kamyab, H.; Taheri, M. M.; Rezazadeh Shirdar, M.; McCaffer, R.Tests and methods of evaluating the self-healing efficiency of concrete: a review. Constr. Build. Mater., 2016, 112, 1123–1132.
Yang, G. W.; Wu, G. P.High-efficiency construction of CO2-based healable thermoplastic elastomers via a tandem synthetic strategy. ACS Sustainable Chem. Eng., 2019, 7(1), 1372–1380.
Wang, J. F.; Cheng, Q. F.; Lin, L.; Jiang, L.Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano, 2014, 8(3), 2739–2745.
Balkenende, D. W. R.; Monnier, C. A.; Fiore, G. L.; Weder, C.Optically responsive supramolecular polymer glasses. Nat. Commun., 2016, 7, 10995.
Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z.Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc., 2014, 136(46), 16128–16131.
Zhao, X.; Wu, H.; Guo, B. L.; Dong, R. N.; Qiu, Y. S.; Ma, P. X.Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122, 34–47.
Wang, X. H.; Li, Y. X.; Qian, Y. H.; Qi, H.; Li, J. A.; Sun, J. Q.Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv. Mater., 2018, 30(36), 1803854
Long, T. J.; Li, Y. X.; Fang, X.; Sun, J. Q.Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv. Funct. Mater., 2018, 28(44), 1804416.
Canadell, J.; Goossens, H.; Klumperman, B.Self-healing materials based on disulfide links. Macromolecules, 2011, 44(8), 2536–2541.
Li, X. F.; Kurokawa, T.; Takahashi, R.; Haque, M. A.; Yue, Y. F.; Nakajima, T.; Gong, J. P.Polymer adsorbed bilayer membranes form self-healing hydrogels with tunable superstructure. Macromolecules, 2015, 48(7), 2277–2282.
Su, E.; Yurtsever, M.; Okay, O.A self-healing and highly stretchable polyelectrolyte hydrogel via cooperative hydrogen bonding as a superabsorbent polymer. Macromolecules, 2019, 52(9), 3257–3267.
Tellers, J.; Canossa, S.; Pinalli, R.; Soliman, M.; Vachon, J.; Dalcanale, E.Dynamic cross-linking of polyethylene via sextuple hydrogen bonding array. Macromolecules, 2018, 51(19), 7680–7691.
Chen, C. X.; Chen, S. W.; Guo, Z. H.; Hu, W. R.; Chen, Z. P.; Wang, J. W.; Hu, J. S.; Guo, J.; Yang, L. Q.Highly efficient self-healing materials with excellent shape memory and unprecedented mechanical properties. J. Mater. Chem. A, 2020, 8(32), 16203–16211.
Chen, C. X.; Duan, N.; Chen, S. W.; Guo, Z. H.; Hu, J. S.; Guo, J.; Chen, Z. P.; Yang, L. Q.Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds. J. Mol. Liq., 2020, 319, 114134.
Chen, C. X.; Li, Z. C.; Chen, S. W.; Kong, L. Z.; Guo, Z. H.; Hu, J. S.; Chen, Z. P.; Yang, L. Q.The preparation of hydrogels with highly efficient self-healing and excellent mechanical properties. J. Mol. Liq., 2021, 329, 115581.
Kang, J.; Son, D.; Wang, G. J N.; Liu, Y. X.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L. H.; Tok, J. B. H.; Bao, Z. N.Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater., 2018, 30(13): 1706846.
Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P.Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater., 2013, 12(10), 932–937.
Zhang, X. N.; Wang, Y. J.; Sun, S. T.; Hou, L.; Wu, P. Y.; Wu, Z. L.; Zheng, Q. A.A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction. Macromolecules, 2018, 51(20), 8136–8146.
0
浏览量
48
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构