浏览全部资源
扫码关注微信
1..中国科学院成都有机化学研究所,成都 610041
2..中国科学院大学,北京 101400
3..首都医科大学附属北京口腔医院,北京 100050
*白威,E-mail: baiwei@cioc.ac.cn
纸质出版日期:2024-05,
收稿日期:2023-09-28,
录用日期:2023-11-15
扫 描 看 全 文
吴蓉, 杨绍哲, 蒋琴瑶, 贾雨耀, 白威, 马攀, 王庆印, 王公应. 三亚甲基碳酸酯基响应性脂肪族聚碳酸酯的研究进展. 高分子通报, 2024, 37(5), 603–615
Wu, R.; Yang, S. Z.; Jiang, Q. Y.; Jia, Y. Y.; Bai, W.; Ma, P.; Wang, Q. Y.; Wang, G. Y. Research progress of trimethylene carbonate-based responsive aliphatic polycarbonate. Polym. Bull. (in Chinese), 2024, 37(5), 603–615
吴蓉, 杨绍哲, 蒋琴瑶, 贾雨耀, 白威, 马攀, 王庆印, 王公应. 三亚甲基碳酸酯基响应性脂肪族聚碳酸酯的研究进展. 高分子通报, 2024, 37(5), 603–615 DOI: 10.14028/j.cnki.1003-3726.2024.23.325.
Wu, R.; Yang, S. Z.; Jiang, Q. Y.; Jia, Y. Y.; Bai, W.; Ma, P.; Wang, Q. Y.; Wang, G. Y. Research progress of trimethylene carbonate-based responsive aliphatic polycarbonate. Polym. Bull. (in Chinese), 2024, 37(5), 603–615 DOI: 10.14028/j.cnki.1003-3726.2024.23.325.
三亚甲基碳酸酯开环聚合刺激响应脂肪族聚碳酸酯
Trimethylene carbonatesRing-opening polymerizationStimuli-responsiveAliphatic poly-carbonates
Tempelaar, S.; Mespouille, L.; Coulembier, O.; Dubois, P.; Dove, A. P.Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev., 2013, 42(3), 1312–1336.
Gao, R. X.; Li, X. M.; Xue, M. L.; Shen, N.; Wang, M. H.; Zhang, J. Y.; Cao, C. H.; Cai, J. F.Development of lipidated polycarbonates with broad-spectrum antimicrobial activity. Biomater. Sci., 2023, 11(5), 1840–1852.
Kuroki, A.; Tay, D. J. W.; Chua, A. C. Y.; Tan, B. S. Y.; Li, N.; Leong, J.; Tan, K. S.; Wang, Y. M.; Tan, E. W. P.; Rénia, L.; Hedrick, J. L.; Yang, Y. Y.; Lee, G. H.Amphiphilic sulfonated polycarbonates inactivate SARS-CoV-2 in seconds. Macromolecules, 2023, 56(15), 6003–6009.
Meng, H. Y.; Yu, Q.; Liu, Z.; Gai, Y. S.; Xue, J. T.; Bai, Y.; Qu, X. C.; Tan, P. C.; Luo, D.; Huang, W. W.; Nie, K. X.; Bai, W.; Hou, Z. S.; Tang, R. P.; Xu, H. X.; Zhang, Y.; Cai, Q.; Yang, X. Z.; Wang, Z. L.; Li, Z.Triboelectric performances of biodegradable polymers. Matter, 2023, 6(12), 4274–4290.
Aerts, A.; Looijmans, S. F. S. P.; van Breemen, L. C. A.; Sijbesma, R. P.; Heuts, J. P. A.Fluorescent visualization of bond breaking in polymer glasses. Macromolecules, 2023, 56(11), 4267–4277.
Weems, A. C.; Arno, M. C.; Yu, W.; Huckstepp, R. T. R.; Dove, A. P.4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat. Commun., 2021, 12(1), 3771.
Chen, C. X.; Hou, Z. P.; Chen, S. W.; Guo, J.; Chen, Z. P.; Hu, J. S.; Yang, L. Q.Photothermally responsive smart elastomer composites based on aliphatic polycarbonate backbone for biomedical applications. Compos. Part B Eng., 2022, 240, 109985.
Zong, Q. D.; Zhou, S. Y.; Ye, J.; Peng, X. X.; Wu, H. Y.; Li, M. H.; Ye, X.; Tian, N. X.; Sun, W.; Zhai, Y. L.Aliphatic polycarbonate-based hydrogel dressing for wound healing. J. Drug Deliv. Sci. Technol., 2023, 79, 104083.
Watanabe, Y.; Kato, R.; Fukushima, K.; Kato, T.Degradable and nanosegregated elastomers with multiblock sequences of biobased aromatic mesogens and biofunctional aliphatic oligocarbonates. Macro-molecules, 2022, 55(23), 10285–10293.
Cho, S.; Heo, G. S.; Khan, S.; Gonzalez, A. M.; Elsabahy, M.; Wooley, K. L.Functionalizable hydro-philic polycarbonate, poly(5-methyl-5-(2-hydroxypropyl) aminocarbonyl-1,3-dioxan-2-one), designed as a degrad-able alternative for PHPMA and PEG. Macromolecules, 2015, 48(24), 8797–8805.
Cho, S.; Heo, G. S.; Khan, S.; Huang, J.; Hunstad, D. A.; Elsabahy, M.; Wooley, K. L.A vinyl ether-functional polycarbonate as a template for multiple postpolymerization modifications. Macromolecules, 2018, 51(9), 3233–3242.
Yu, W.; Maynard, E.; Chiaradia, V.; Arno, M. C.; Dove, A. P.Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials. Chem. Rev., 2021, 121(18), 10865–10907.
Dai, Y.; Zhang, X. J.Recent development of functional aliphatic polycarbonates for the construction of amphiphilic polymers. Polym. Chem., 2017, 8(48), 7429–7437.
Dai, Y.; Zhang, X. J.; Xia, F.Click chemistry in functional aliphatic polycarbonates. Macromol. Rapid Commun., 2017, 38(19), 1700357.
Domiński, A.; Konieczny, T.; Duale, K.; Krawczyk, M.; Pastuch-Gawołek, G.; Kurcok, P.Stimuli-responsive aliphatic polycarbonate nanocarriers for tumor-targeted drug delivery. Polymers, 2020, 12(12), 2890.
Wei, J. J.; Meng, H.; Guo, B. B.; Zhong, Z. Y.; Meng, F. H.Organocatalytic ring-opening copolymerization of trimethylene carbonate and dithiolane trimethylene carbonate: impact of organocatalysts on copolymeri-zation kinetics and copolymer micros-tructures. Biomacromolecules, 2018, 19(6), 2294–2301.
Clements, J. H.Reactive applications of cyclic alkylene carbonates. Ind. Eng. Chem. Res., 2003, 42(4), 663–674.
Czysch, C.; Dinh, T.; Fröder, Y.; Bixenmann, L.; Komforth, P.; Balint, A.; Räder, H. J.; Naumann, S.; Nuhn, L.Nontoxic N-heterocyclic olefin catalyst systems for well-defined polymerization of biocompatible aliphatic polycarbonates. ACS Polym. Au, 2022, 2(5), 371–379.
Raval, N.; Maheshwari, R.; Shukla, H.; Kalia, K.; Torchilin, V. P.; Tekade, R. K.Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. Mater. Sci. Eng. C, 2021, 126, 112186.
He, M. M.; Zhang, Z. W.; Jiao, Z. Y.; Yan, M. Y.; Miao, P. C.; Wei, Z. Y.; Leng, X. F.; Li, Y.; Fan, J. L.; Sun, W.; Peng, X. J.Redox-responsive phenyl-functionalized polylactide micelles for enhancing Ru complexes delivery and phototherapy. Chin. Chem. Lett., 2023, 34(3), 107574.
Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z.Aggregation-induced emission: together we shine, united we soar! Chem. Rev., 2015, 115(21), 11718–11940.
Li, Z.; Qiu, L. P.; Chen, Q.; Hao, T. N.; Qiao, M. X.; Zhao, H. X.; Zhang, J.; Hu, H. Y.; Zhao, X. L.; Chen, D. W.; Mei, L.pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl poly-ethylene glycol succinate for anti-tumor drug delivery. Acta Biomater., 2015, 11, 137–150.
Zhai, H.; Chen, K. B.; Meng, Y.; Wu, Z. J.; Deng, R. L.; Bai, Y.; Zhou, J.; Quan, D. P.Synthesis and self-assembly of amphiphilic diblock polycarbonates with various pendant hydrophilic groups. Polymer, 2022, 244, 124664.
Li, K. Q.; Chen, L.; Xiong, Z. C.; Xiong, C. D.; Chen, D. L.New aliphatic poly(ester-carbonate)s bearing amino groups based on t-butyloxy carbonyl as protecting group. J. Polym. Res., 2021, 29(1), 20.
Heo, G. S.; Cho, S.; Wooley, K. L.Preparation of degradable polymeric nanoparticles with various sizes and surface charges from polycarbonate block copolymers. Macromol. Res., 2019, 27(11), 1173–1178.
Kocak, G.; Tuncer, C.; Bütün, V.pH-Responsive polymers. Polym. Chem., 2017, 8(1), 144–176.
Ganivada, M. N.; Kumar, P.; Kanjilal, P.; Dinda, H.; Das Sarma, J.; Shunmugam, R.Polycarbonate-based biodegradable copolymers for stimuli responsive targeted drug delivery. Polym. Chem., 2016, 7(25), 4237–4245.
Jiang, T.; Li, Y. M.; Lv, Y.; Cheng, Y. J.; He, F.; Zhuo, R. X.Amphiphilic polycarbonate conjugates of doxorubicin with pH-sensitive hydrazone linker for controlled release. Colloids Surf. B Biointerfaces, 2013, 111, 542–548.
Liang, E. H.; Guo, Z. H.; Hu, Z.; Chen, Z. P.; Reheman, A.; Wang, J. W.; Hu, J. S.pH-Responsive expandable polycarbonate–doxorubicin conjugate nanoparticles for fast intracellular drug release. New J. Chem., 2021, 45(16), 7261–7269.
Sun, J. J.; Fransen, S.; Yu, X. Q.; Kuckling, D.Synthesis of pH-cleavable poly(trimethylene carbonate)-based block copolymers via ROP and RAFT polymerization. Polym. Chem., 2018, 9(23), 3287–3296.
Kalva, N.; Uthaman, S.; Lee, S. J.; Lim, Y. J.; Augustine, R.; Huh, K. M.; Park, I. K.; Kim, I.Degradable pH-responsive polymer prodrug micelles with aggregation-induced emission for cellular imaging and cancer therapy. React. Funct. Polym., 2021, 166, 104966.
Arno, M. C.; Brannigan, R. P.; Policastro, G. M.; Becker, M. L.; Dove, A. P.pH-Responsive, functionalizable spyrocyclic polycarbonate: a versatile platform for biocompatible nanoparticles. Biomacromolecules, 2018, 19(8), 3427–3434.
Arno, M. C.; Simpson, J. D.; Blackman, L. D.; Brannigan, R. P.; Thurecht, K. J.; Dove, A. P.Enhanced drug delivery to cancer cells through a pH-sensitive polycarbonate platform. Biomater. Sci., 2023, 11(3), 908–915.
He, J. W.; Xia, Y. C.; Niu, Y. L.; Hu, D.; Xia, X. N.; Lu, Y. B.; Xu, W. J.pH-Responsive core crosslinked polycarbonate micelles via thiol-acrylate Michael addition reaction. J. Appl. Polym. Sci., 2017, 134(5), 44421
Niu, Y. L.; Lu, Y. B.Construction of pH-responsive core crosslinked micelles via thiol-yne click reaction. J. Appl. Polym. Sci., 2022, 139(32), e52753.
Zhao, M. Y.; Wan, S. Y.; Peng, X. Y.; Zhang, B. Y.; Pan, Q. Q.; Li, S.; He, B.; Pu, Y. J.Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo-photodynamic therapy. J. Mater. Chem. B, 2020, 8(6), 1235–1244.
Chen, X. Q.; Wang, F.; Hyun, J. Y.; Wei, T. W.; Qiang, J.; Ren, X. T.; Shin, I.; Yoon, J.Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev., 2016, 45(10), 2976–3016.
Birhan, Y. S.; Tsai, H. C.Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J. Mater. Chem. B, 2021, 9(34), 6770–6801.
Chen, W.; Zou, Y.; Jia, J. N.; Meng, F. H.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Y.Functional poly(ε-caprolactone)s via copolymerization of ε-caprolactone and pyridyl disulfide-containing cyclic carbonate: controlled synthesis and facile access to reduction-sensitive biodegradable graft copolymer micelles. Macromolecules, 2013, 46(3), 699–707.
Wang, J. H.; Sun, C. H.; Hu, J. N.; Huang, Y. L.; Lu, Y. X.; Zhang, Y.Ring opening copolymerization of ε-caprolactone and diselenic macrolide carbonate for well-defined poly(ester-co-carbonate): kinetic evaluation and ROS/GSH responsiveness. Polym. Chem., 2020, 11(9), 1597–1605.
Xia, Y. C.; He, H.; Liu, X. Y.; Hu, D.; Yin, L. C.; Lu, Y. B.; Xu, W. J.Redox-responsive, core-crosslinked degradable micelles for controlled drug release. Polym. Chem., 2016, 7(41), 6330–6339.
Zhang, X. Y.; Waymouth, R. M.1,2-Dithiolane-derived dynamic, covalent materials: cooperative self-assembly and reversible cross-linking. J. Am. Chem. Soc., 2017, 139(10), 3822–3833.
Xia, Y. C.; Wang, N. N.; Qin, Z. L.; Wu, J.; Wang, F.; Zhang, L.; Xia, X. N.; Li, J. S.; Lu, Y. B.Polycarbonate-based core-crosslinked redox-responsive nanoparticles for targeted delivery of anticancer drug. J. Mater. Chem. B, 2018, 6(20), 3348–3357.
Xu, L.; Yang, Y. D.; Zhao, M. Y.; Gao, W. X.; Zhang, H.; Li, S.; He, B.; Pu, Y. J.A reactive oxygen species-responsive prodrug micelle with efficient cellular uptake and excellent bioavailability. J. Mater. Chem. B, 2018, 6(7), 1076–1084.
Wang, D. Q.; Wang, S.; Xia, Y. C.; Liu, S. M.; Jia, R. X.; Xu, G. G.; Zhan, J. J.; Lu, Y. B.Preparation of ROS-responsive core crosslinked polycarbonate micelles with thioketal linkage. Colloids Surf. B Biointerfaces, 2020, 195, 111276.
Yu, L.; Yang, Y.; Du, F. S.; Li, Z. C.ROS-responsive chalcogen-containing polycarbonates for photodynamic therapy. Biomacromolecules, 2018, 19(6), 2182–2193.
Yang, X. L.; Xing, X.; Li, J.; Liu, Y. H.; Wang, N.; Yu, X. Q.Enzymatic synthesis of selenium-containing amphiphilic aliphatic polycarbonate as an oxidation-responsive drug delivery vehicle. RSC Adv., 2019, 9(11), 6003–6010.
Fu, Y. H.; Chen, C. Y.; Chen, C. T.Tuning of hydrogen peroxide-responsive polymeric micelles of biodegradable triblock polycarbonates as a potential drug delivery platform with ratiometric fluorescence signaling. Polym. Chem., 2015, 6(47), 8132–8143.
Chen, C. Y.; Chen, C. T.Reaction-based and single fluorescent emitter decorated ratiometric nanoprobe to detect hydrogen peroxide. Chem. Eur. J., 2013, 19(47), 16050–16057.
Zhao, C. Z.; Ma, Z. Y.; Zhu, X. X.Rational design of thermoresponsive polymers in aqueous solutions: a thermodynamics map. Prog. Polym. Sci., 2019, 90, 269–291.
Png, Z. M.; Wang, C. G.; Yeo, J. C. C.; Lee, J. J. C.; Surat’man, N. E.; Tan, Y. L.; Liu, H. F.; Wang, P.; Tan, B. H.; Xu, J. W.; Loh, X. J.; Zhu, Q.Stimuli-responsive structure-property switchable polymer materials. Mol. Syst. Des. Eng., 2023, 8(9), 1097–1129.
Schild, H. G.Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci., 1992, 17(2), 163–249.
Mespouille, L.; Nederberg, F.; Hedrick, J. L.; Dubois, P.Broadening the scope of functional groups accessible in aliphatic polycarbonates by the introduction of RAFT initiating sites. Macromolecules, 2009, 42(16), 6319–6321.
Zhang, Q. L.; Weber, C.; Schubert, U. S.; Hoogenboom, R.Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz., 2017, 4(2), 109–116.
Ward, M. A.; Georgiou, T. K.Thermoresponsive polymers for biomedical applications. Polymers, 2011, 3(3), 1215–1242.
Thomas, A. W.; Kuroishi, P. K.; Pérez-Madrigal, M. M.; Whittaker, A. K.; Dove, A. P.Synthesis of aliphatic polycarbonates with a tuneable thermal response. Polym. Chem., 2017, 8(34), 5082–5090.
Kim, S. H.; Tan, J. P. K.; Fukushima, K.; Nederberg, F.; Yang, Y. Y.; Waymouth, R. M.; Hedrick, J. L.Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Biomaterials, 2011, 32(23), 5505–5514.
Manouras, T.; Vamvakaki, M.Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym. Chem., 2017, 8(1), 74–96.
Zhao, W.; Zhao, Y. M.; Wang, Q. F.; Liu, T. Q.; Sun, J. J.; Zhang, R.Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives. Small, 2019, 15(45), e1903060.
Hu, D.; Li, Y. F.; Niu, Y. L.; Li, L.; He, J. W.; Liu, X. Y.; Xia, X. N.; Lu, Y. B.; Xiong, Y. Q.; Xu, W. J.Photo-responsive reversible micelles based on azobenzene-modified poly(carbonate)s via azide-alkyne click chemistry. RSC Adv., 2014, 4(89), 47929–47936.
Shen, H. H.; Xia, Y. C.; Qin, Z. L.; Wu, J.; Zhang, L.; Lu, Y. B.; Xia, X. N.; Xu, W. J.Photoresponsive biodegradable poly(carbonate)s with pendent o-nitrobenzyl ester. J. Polym. Sci. Part A Polym. Chem., 2017, 55(17), 2770–2780.
Kalva, N.; Uthaman, S.; Augustine, R.; Jeon, S. H.; Huh, K. M.; Park, I. K.; Kim, I.Photo- and pH-responsive polycarbonate block copolymer prodrug nanomicelles for controlled release of doxorubicin. Macromol. Biosci., 2020, 20(8), e2000118.
Sun, J. J.; Jung, D.; Schoppa, T.; Anderski, J.; Picker, M. T.; Ren, Y.; Mulac, D.; Stein, N.; Langer, K.; Kuckling, D.Light-responsive serinol-based polycarbonate and polyester as degradable scaffolds. ACS Appl. Bio Mater., 2019, 2(7), 3038–3051.
He, M. M.; Wang, R.; Wan, P. Y.; Wang, H. X.; Cheng, Y.; Miao, P. C.; Wei, Z. Y.; Leng, X. F.; Li, Y.; Du, J. J.; Fan, J. L.; Sun, W.; Peng, X. J.Biodegradable Ru-containing polycarbonate micelles for photoinduced anticancer mul-titherapeutic agent delivery and phototherapy enhancement. Biomacromolecules, 2022, 23(4), 1733–1744.
Boyer, C.; Hoogenboom, R.Multi-responsive polymers. Eur. Polym. J., 2015, 69, 438–440.
Guo, Z. H.; Liu, X. F.; Chen, Z. P.; Hu, J. S.; Yang, L. Q.New liquid crystal polycarbonate micelles for intracellular delivery of anticancer drugs. Colloids Surf. B Biointerfaces, 2019, 178, 395–403.
Liu, X. F.; Guo, Z. H.; Ge, T. J.; Hu, J. S.; Wang, J. W.; Yang, L. Q.Self-assembly and in vitro drug release behaviors of amphiphilic copolymers based on functionalized aliphatic liquid crystalline polycarbonate with pH/temperature dual response. J. Mol. Liq., 2020, 316, 113837.
Cai, Z. Z.; Zeng, J.; Guo, T. Y.; Wang, J.; Xie, H. L.; Reheman, A.Dual responsive self-healing hydrogels with wide stability and excellent mechanical strength based on aliphatic polycarbonate. Heliyon, 2023, 9(4), e15070.
Yu, L.; Xie, M. M.; Li, Z.; Lin, C. Y.; Zheng, Z.; Zhou, L. Z.; Su, Y.; Wang, X. L.Facile construction of near-monodisperse and dual responsive polycarbonate mixed micelles with the ability of pH-induced charge reversal for intracellular delivery of antitumor drugs. J. Mater. Chem. B, 2016, 4(36), 6081–6093.
Yu, L.; Tan, S. W.; Li, Z.; Zheng, Z.; Zhou, L. Z.; Su, Y.; Wang, X. L.Mixed polycarbonate prodrug nanoparticles with reduction/pH dual-responsive and charge conver-sional properties. React. Funct. Polym., 2017, 120, 74–82.
Zou, Y.; Song, Y.; Yang, W. J.; Meng, F. H.; Liu, H. Y.; Zhong, Z. Y.Galactose-installed photo-crosslinked pH-sensitive degradable micelles for active targeting chemotherapy of hepatocellular carcinoma in mice. J. Control. Release, 2014, 193, 154–161.
Shen, Y.; Xiong, W.; Li, Y. Z.; Zhao, Z. C.; Lu, H.; Li, Z. B.Chemoselective polymerization of fully biorenewable α-methylene-γ-butyrolactone using organophosphazene/urea binary catalysts toward sustainable polyesters. CCS Chem., 2021, 3(1), 620–630.
0
浏览量
68
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构