浏览全部资源
扫码关注微信
东北石油大学化学化工学院 聚烯烃新材料省重点实验室,大庆 163318
*毛国梁,E-mail: maoguoliang@nepu.edu.cn
纸质出版日期:2024-05,
收稿日期:2023-10-19,
录用日期:2023-11-15
扫 描 看 全 文
李奥博, 毛国梁. 单萜烯可持续聚合物的研究进展. 高分子通报, 2024, 37(5), 616–629
Li, A. B.; Mao, G. L. Research progress of sustainable monoterpene polymers. Polym. Bull. (in Chinese), 2024, 37(5), 616–629
李奥博, 毛国梁. 单萜烯可持续聚合物的研究进展. 高分子通报, 2024, 37(5), 616–629 DOI: 10.14028/j.cnki.1003-3726.2024.23.351.
Li, A. B.; Mao, G. L. Research progress of sustainable monoterpene polymers. Polym. Bull. (in Chinese), 2024, 37(5), 616–629 DOI: 10.14028/j.cnki.1003-3726.2024.23.351.
单萜烯蒎烯柠檬烯月桂烯聚合
MonoterpenePineneLimoneneMyrcenePolymerization
Williams, C.; Hillmyer, M.Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym. Rev., 2008, 48(1), 790431830.
Okada, M.Chemical syntheses of biodegradable polymers. Prog. Polym. Sci., 2002, 27(1), 87–133.
Zhu, Y. Q.; Romain, C.; Williams, C. K.Sustainable polymers from renewable resources. Nature, 2016, 540(7633), 354–362.
Wang, Z. K.; Yuan, L.; Tang, C. B.Sustainable elastomers from renewable biomass. Acc. Chem. Res., 2017, 50(7), 1762–1773.
Yao, K. J.; Tang, C. B.Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules, 2013, 46(5), 1689–1712.
Gandini, A.Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules, 2008, 41(24), 9491–9504.
Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L.Renewable polymers and plastics: performance beyond the green. N. Biotechnol., 2021, 60, 146–158.
Beach, E. S.; Cui, Z.; Anastas, P. T.Green chemistry: a design framework for sustainability. Energy Environ. Sci., 2009, 2(10), 1038–1049.
Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L.Plastic waste inputs from land into the ocean. Science, 2015, 347(6223), 768–771.
Suaria, G.; Avio, C. G.; Mineo, A.; Lattin, G. L.; Magaldi, M. G.; Belmonte, G.; Moore, C. J.; Regoli, F.; Aliani, S.The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters. Sci. Rep., 2016, 6, 37551.
Wang, Z. K.; Ganewatta, M. S.; Tang, C. B.Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog. Polym. Sci., 2020, 101, 101197.
Kristufek, S. L.; Wacker, K. T.; Tsao, Y. Y T.; Su, L.; Wooley, K. L.Monomer design strategies to create natural product-based polymer materials. Nat. Prod. Rep., 2017, 34(4), 433–459.
Gandini, A.The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem., 2011, 13(5), 1061–1083.
Wang, S.; Lu, A.; Zhang, L. N.Recent advances in regenerated cellulose materials. Prog. Polym. Sci., 2016, 53, 169–206.
Delidovich, I.; Hausoul, P. J. C.; Deng, L.; Pfützenreuter, R.; Rose, M.; Palkovits, R.Alternative monomers based on lignocellulose and their use for polymer production. Chem. Rev., 2016, 116(3), 1540–1599.
Xu, C. P.; Arancon, R. A. D.; Labidi, J.; Luque, R.Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem. Soc. Rev., 2014, 43(22), 7485–7500.
Jin, Y. J.; Joshi, M.; Araki, T.; Kamimura, N.; Masai, E.; Nakamura, M.; Michinobu, T.Click synthesis of triazole polymers based on lignin-derived metabolic intermediate and their strong adhesive properties to Cu plate. Polymers, 2023, 15(6), 1349.
郝杰, 高玉霞, 陈厚睿, 胡君, 巨勇. 基于天然萜类的可持续性聚合物. 高分子学报, 2020, 51(3), 239–266.
Gandini, A.; Lacerda, T. M.; Carvalho, A. J. F.; Trovatti, E.Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem. Rev., 2016, 116(3), 1637–1669.
Gandini, A.; Lacerda, T. M.Furan polymers: state of the art and perspectives. Macromol. Mater. Eng., 2022, 307(6), 2100902.
Sahu, P.; Bhowmick, A. K.; Kali, G.Terpene based elastomers: synthesis, properties, and applications. Processes, 2020, 8(5), 553.
陆交, 张耀, 段庆华, 刘依农, 鱼鲲, 王立华, 曾建立. 生物基润滑油基础油的结构创新与产业化进展. 石油学报(石油加工), 2018, 34(2), 203–216.
Papageorgiou, G. Z.Thinking green: Sustainable polymers from renewable resources. Polymers, 2018, 10(9), 952.
Schneiderman, D. K.; Hillmyer, M. A.50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules, 2017, 50(10), 3733–3749.
Xiao, C. M.Rational development of a unique family of renewable polymers. Front. Mater. Sci., 2023, 17(1), 230629.
Zhang, H.; Wu, J. Q.; Guo, J. B.; Hu, J.Natural terpenoid-based sustainable thermoplastics, cross-linked polymers, and supramolecular materials. Polym. Rev., 2023, 1–43.
黎贵卿, 陆顺忠, 关继华, 吴建文, 苏骊华. β-蒎烯裂解制取月桂烯的技术. 广西林业科学, 2018, 47(3), 345–349.
宋琨燕, 李金梦, 鄢烽, 巫小丹, 刘玉环, 郑洪立. 柑橘皮中d-柠檬烯的提取及在食品保鲜中的应用研究进展. 食品工业, 2023, 44(7), 217–221.
Silvestre, A. J. D.; Gandini, A.Terpenes: major sources, properties and applications. Monomers, Polymers and Composites from Renewable Resources. Amsterdam: Elsevier, 2008, 17–38.
Sahoo, S.; Ghosh, P.; Banerjee, S.; De, P.Recent advances in biomedical applications of cholic acid-based macromolecules. ACS Appl. Polym. Mater., 2021, 3(4), 1687–1706.
Datta, L. P.; Manchineella, S.; Govindaraju, T.Biomolecules-derived biomaterials. Biomaterials, 2020, 230, 119633.
Choi, S.; Kim, B.; Park, S.; Seo, J. H.; Ahn, S. K.Slidable cross-linking effect on liquid crystal elastomers: enhancement of toughness, shape-memory, and self-healing properties. ACS Appl. Mater. Interfaces, 2022, 14(28), 32486–32496.
Winnacker, M.Pinenes: Abundant and renewable building blocks for a variety of sustainable polymers. Angew. Chem. Int. Ed., 2018, 57(44), 14362–14371.
Satoh, K.; Nakahara, A.; Mukunoki, K.; Sugiyama, H.; Saito, H.; Kamigaito, M.Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: living cationic polymerization of β-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(β-pinene). Polym. Chem., 2014, 5(9), 3222–3230.
Akeb, M.; Harrane, A.; Belbachir, M.Polymerization of β-pinene by using natural montmorillonite clay as a green catalyst. Green Mater., 2018, 6(2), 58–64.
Miyaji, H.; Satoh, K.; Kamigaito, M.Bio-based polyketones by selective ring-opening radical poly-merization of α-pinene-derived pinocarvone. Angew. Chem. Int. Ed., 2016, 55(4), 1372–1376.
Pietila, H.; Sivola, A.; Sheffer, H.Cationic poly-merization of β-pinene, styrene and α-methylstyrene. J. Polym. Sci. Part A Polym. Chem., 1970, 8(3), 727–737.
Lu, J.; Kamigaito, M.; Sawamoto, M.; Higashimura, T.; Deng, Y. X.Living cationic isomerization polymerization of β-pinene. 1. Initiation with HCl-2-chloroethyl vinyl ether adduct/TiCl3(OiPr) in conjunction with nBu4NCl. Macromolecules, 1997, 30(1), 22–26.
Lu, J.; Kamigaito, M.; Sawamoto, M.; Higashimura, T.; Deng, Y. X.Living cationic isomerization polymerization of β-pinene. 2. Synthesis of block and random copolymers with styrene or p-methylstyrene. Macromolecules, 1997, 30(1), 27–31.
Lu, J.; Kamigaito, M.; Sawamoto, M.; Higashimura, T.; Deng, Y. X.Living cationic isomerization polymerization of β-pinene. III. Synthesis of end-functionalized polymers and graft copolymers. J. Polym. Sci. A Polym. Chem., 1997, 35(8), 1423–1430.
Satoh, K.; Sugiyama, H.; Kamigaito, M.Biomass-derived heat-resistant alicyclic hydrocarbonpolymers: poly(terpenes) and their hydrogenated derivatives. Green Chem., 2006, 8(10), 878–882.
Yu, P.; Li, A. L.; Liang, H.; Lu, J.Polymerization of β-pinene with Schiff-base nickel complexes catalyst: synthesis of relatively high molecular weight poly(β-pinene) at high temperature with high productivity. J. Polym. Sci. Part A Polym. Chem., 2007, 45(16), 3739–3746.
Kukhta, N. A.; Vasilenko, I. V.; Kostjuk, S. V.Room temperature cationic polymerization of β-pinene using modified AlCl3 catalyst: toward sustainable plastics from renewable biomass resources. Green Chem., 2011, 13(9), 2362–2364.
Karasawa, Y.; Kimura, M.; Kanazawa, A.; Kanaoka, S.; Aoshima, S.New initiating systems for cationic polymerization of plant-derived monomers: GaCl3/alkylbenzene-induced controlled cationic polymerization of β-pinene. Polym. J., 2015, 47(2), 152–157.
Destephen, A.; González de San Román, E.; Martínez-Tong, D. E.; Ballard, N.Cationic polymerization of β-pinene using B(C6F5)3 as a Lewis acid for the synthesis of tackifiers in pressure sensitive adhesives. Macromol. Mater. Eng., 2021, 306(9), 2100194.
Rodrigues, P. R.; Gonçalves, S. A.; Vieira, R. P.Organocatalyzed β-pinene polymerization in UV light: assessment of reaction conditions and material characterization. Eur. Polym. J., 2021, 147, 110303.
Liu, S. W.; Xie, C. X.; Yu, S. T.; Liu, F. S.Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst. Catal. Commun., 2009, 10(6), 986–988.
Liu, S. W.; Zhou, L.; Yu, S. T.; Xie, C. X.; Liu, F. S.; Song, Z. Q.Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst for production of terpene resin. Biomass Bioenergy, 2013, 57, 238–242.
Li, A. Y.; Sun, X. D.; Zhang, H. B.; Zhang, Y. C.; Wang, B.; Shi, L. Q.Cationic copolymerization of 1,3-pentadiene with α-pinene. J. Polym. Eng., 2014, 34(7), 583–589.
Upadhyaya, M.; Ghosh, P.; Dey, K.Acrylate-α-pinene copolymer as biodegradable multifunctional additives for lube oil. J. Sci. Ind. Res., 2017, 76(5), 303–307.
Faujdar, E.; Negi, H.; Singh, R. K.; Varshney, V. K.Study on biodegradable poly(α-olefins-co-α-pinene) architectures as pour point depressant and viscosity index improver additive for lubricating oils. J. Polym. Environ., 2020, 28(11), 3019–3027.
You, F.; Shi, W. Y.; Yan, X. Y.; Wang, X. Y.; Shi, X. C.Polymerization of bio-derived conjugated dienes with rare-earth-metal complexes. Chem. Asian J., 2022, 17(23), e202200892.
Tovar, V. A. C.; Rios, A. R.; Galindo, A. S.; Cepeda, L. F.Synthesis routes for obtaining elastomers based on monomers extracted from a vegetable source: polymyrcene study Pol(MY) Afinidad, 2022, 79(595), 288–292.
Marvel, C. S.; Hwa, C. C. L.Polymyrcene. J. Polym. Sci., 1960, 45(145), 25–34.
Quirk, R. P.; Huang, T. L.Alkyllithium-initiated polymerization of myrcene new block copolymers of styrene and myrcene. In: Culbertson, B. M., Pittman, C. U.New Monomers and Polymers. Boston, MA: Springer, 1984, 329–355.
Matic, A.; Schlaad, H.Thiol-ene photofunctionalization of 1, 4-polymyrcene. Polym. Int., 2018, 67(5), 500–505.
Grune, E.; Bareuther, J.; Blankenburg, J.; Appold, M.; Shaw, L.; Müller, A. H. E.; Floudas, G.; Hutchings, L. R.; Gallei, M.; Frey, H.Towards bio-based tapered block copolymers: the behaviour of myrcene in the statistical anionic copolymerisation. Polym. Chem., 2019, 10(10), 1213–1220.
Kobayashi, S.; Lu, C.; Hoye, T. R.; Hillmyer, M. A.Controlled polymerization of a cyclic diene prepared from the ring-closing metathesis of a naturally occurring monoterpene. J. Am. Chem. Soc., 2009, 131(23), 7960–7961.
Radchenko, A. V.; Bouchekif, H.; Peruch, F.Triflate esters as in situ generated initiating system for carbocationic polymerization of vinyl ethers, isoprene, myrcene and ocimene. Eur. Polym. J., 2017, 89, 34–41.
Hulnik, M. I.; Vasilenko, I. V.; Radchenko, A. V.; Peruch, F.; Ganachaud, F.; Kostjuk, S. V.Aqueous cationic homo- and co-polymerizations of β-myrcene and styrene: a green route toward terpene-based rubbery polymers. Polym. Chem., 2018, 9(48), 5690–5700.
Lamparelli, D. H.; Kleybolte, M. M.; Winnacker, M.; Capacchione, C.Sustainable myrcene-based elastomers via a convenient anionic polymerization. Polymers, 2021, 13(5), 838.
Zhang, J. W.; Lu, J. M.; Su, K.; Wang, D. F.; Han, B. Y.Bio-based β-myrcene-modified solution-polymerized styrene-butadiene rubber for improving carbon black dispersion and wet skid resistance. J. Appl. Polym. Sci., 2019, 136(45), 48159.
Georges, S.; Touré, A. O.; Visseaux, M.; Zinck, P.Coordinative chain transfer copolymerization and terpolymerization of conjugated dienes. Macromolecules, 2014, 47(14), 4538–4547.
Ciriminna, R.; Lomeli-Rodriguez, M.; Demma Carà, P.; Lopez-Sanchez, J. A.; Pagliaro, M.Limonene: a versatile chemical of the bioeconomy. Chem. Commun., 2014, 50(97), 15288–15296.
Thomsett, M. R.; Moore, J. C.; Buchard, A.; Stockman, R. A.; Howdle, S. M.New renewably-sourced polyesters from limonene-derived monomers. Green Chem., 2019, 21(1), 149–156.
Baron, E. P.Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: an update on current evidence and cannabis science. Headache J. Head Face Pain, 2018, 58(7), 1139–1186.
Llevot, A.; Dannecker, P. K.; Von Czapiewski, M.; Over, L. C.; Söyler, Z.; Meier, M. A. R.Renewability is not enough: recent advances in the sustainable synthesis of biomass-derived monomers and polymers. Chem. Eur. J., 2016, 22(33), 11510–11521.
Palenzuela, M.; Sánchez-Roa, D.; Damián, J.; Sessini, V.; Mosquera, M. E. G.Polymerization of terpenes and terpenoids using metal catalysts. Adv. Organomet. Chem., 2021, 75, 55–93.
Winnacker, M.Terpene-based polyamides: a sustainable polymer class with huge potential. Curr. Opin. Green Sustain. Chem., 2023, 41, 100819.
de Oliveira, E. R. M.; Vieira, R. P.Synthesis and characterization of poly(limonene) by photoinduced controlled radical polymerization. J. Polym. Environ., 2020, 28(11), 2931–2938.
Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B.; Coates, G. W.Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc., 2004, 126(37), 11404–11405.
Hauenstein, O.; Reiter, M.; Agarwal, S.; Rieger, B.; Greiner, A.Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency. Green Chem., 2016, 18(3), 760–770.
Hauenstein, O.; Agarwal, S.; Greiner, A.Bio-based polycarbonate as synthetic toolbox. Nat. Commun., 2016, 7, 11862.
Kernbichl, S.; Rieger, B.Aliphatic polycarbonates derived from epoxides and CO2: a comparative study of poly(cyclohexene carbonate) and poly(limonene carbonate). Polymer, 2020, 205, 122667.
Martín, C.; Kleij, A. W.Terpolymers derived from limonene oxide and carbon dioxide: access to cross-linked polycarbonates with improved thermal properties. Macromolecules, 2016, 49(17), 6285–6295.
Kindermann, N.; Cristòfol, À.; Kleij, A. W.Access to biorenewable polycarbonates with unusual glass-transition temperature (Tg) modulation. ACS Catal., 2017, 7(6), 3860–3863.
Li, C. L.; Sablong, R. J.; Koning, C. E.Chemoselective alternating copolymerization of limonene dioxide and carbon dioxide: a new highly functional aliphatic epoxy polycarbonate. Angew. Chem. Int. Ed., 2016, 55(38), 11572–11576.
Li, C. L.; Sablong, R. J.; van Benthem, R. A. T. M.; Koning, C. E.Unique base-initiated depolymerization of limonene-derived polycarbonates. ACS Macro Lett., 2017, 6(7), 684–688.
Stößer, T.; Li, C. L.; Unruangsri, J.; Saini, P. K.; Sablong, R. J.; Meier, M. A. R.; Williams, C. K.; Koning, C.Bio-derived polymers for coating applications: comparing poly(limonene carbonate) and poly(cyclohexadiene carbonate). Polym. Chem., 2017, 8(39), 6099–6105.
Louisy, E.; Khodyrieva, V.; Olivero, S.; Michelet, V.; Mija, A.Use of limonene epoxides and derivatives as promising monomers for biobased polymers. ChemPlusChem, 2022, 87(8), e202200190.
Doiuchi, T.; Yamaguchi, H.; Minoura, Y.Cyclo-copolymerization of d-limonene with maleic anhydride. Eur. Polym. J., 1981, 17(9), 961–968.
Malińska‐Solich, J.; Kupka, T.; Kluczka, M.; Solich, A.Optically active polymers, 2. Copolymerization of limonene with maleic anhydride. Macromol. Chem. Phys., 1994, 195(5), 1843–1850.
Jeske, R. C.; DiCiccio, A. M.; Coates, G. W.Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. J. Am. Chem. Soc., 2007, 129(37), 11330–11331.
Nejad, E. H.; Paoniasari, A.; van Melis, C. G. W.; Koning, C. E.; Duchateau, R.Catalytic ring-opening copoly-merization of limonene oxide and phthalic anhydride: toward partially renewable polyesters. Macromolecules, 2013, 46(3), 631–637.
Ryu, H. K.; Bae, D. Y.; Lim, H.; Lee, E.; Son, K. S.Ring-opening copolymerization of cyclic epoxide and anhydride using a five-coordinate chromium complex with a sterically demanding amino triphenolate ligand. Polym. Chem., 2020, 11(22), 3756–3761.
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构