浏览全部资源
扫码关注微信
1..四川大学华西医院 耳鼻咽喉头颈外科,成都 610041
2..四川大学华西天府医院 耳鼻咽喉头颈外科,成都 610041
3..四川大学高分子科学与工程学院,成都 610041
4..绵阳市中心医院 耳鼻咽喉颌面外科,绵阳 621000
*吕丹,E-mail: danshijie001@163.com
纸质出版日期:2024-06,
收稿日期:2023-11-02,
录用日期:2023-12-05
扫 描 看 全 文
彭园园, 吕丹, 罗锋, 杨奉玲. 天然及人工合成水凝胶在医用止血敷料上的研究进展. 高分子通报, 2024, 37(6), 713–724
Peng, Y. Y.; Lv, D.; Luo, F.; Yang, F. L. Research advances in natural and synthetic hydrogels for medical hemostatic dressings. Polym. Bull. (in Chinese), 2024, 37(6), 713–724
彭园园, 吕丹, 罗锋, 杨奉玲. 天然及人工合成水凝胶在医用止血敷料上的研究进展. 高分子通报, 2024, 37(6), 713–724 DOI: 10.14028/j.cnki.1003-3726.2024.23.371.
Peng, Y. Y.; Lv, D.; Luo, F.; Yang, F. L. Research advances in natural and synthetic hydrogels for medical hemostatic dressings. Polym. Bull. (in Chinese), 2024, 37(6), 713–724 DOI: 10.14028/j.cnki.1003-3726.2024.23.371.
组织黏合剂组织黏合水凝胶止血机制出血模型生物医学
Tissue adhesivesTissue adhesive hydrogelsHemostatic mechanismsHemorrhage modelsBiomedical
Curry, N.; Hopewell, S.; Dorée, C.; Hyde, C.; Brohi, K.; Stanworth, S.The acute management of trauma hemorrhage: a systematic review of randomized controlled trials. Crit. Care, 2011, 15(2), R92.
Guo, B. L.; Dong, R. N.; Liang, Y. P.; Li, M.Haemostatic materials for wound healing applications. Nat. Rev. Chem., 2021, 5(11), 773–791.
Nuyttens, B. P.; Thijs, T.; Deckmyn, H.; Broos, K.Platelet adhesion to collagen. Thromb. Res. 2011, 127, S26–S29.
Broos, K.; Feys, H. B.; De Meyer, S. F.; Vanhoorelbeke, K.; Deckmyn, H.Platelets at work in primary hemostasis. Blood Rev., 2011, 25(4), 155–167.
Guo, Y. Y.; Cheng, N. Q.; Sun, H. X.; Hou, J. N.; Zhang, Y. C.; Wang, D.; Zhang, W.; Chen, Z. Y.Advances in the development and optimization strategies of the hemostatic biomaterials. Front. Bioeng. Biotechnol., 2023, 10, 1062676.
Montazerian, H.; Davoodi, E.; Baidya, A.; Baghdasarian, S.; Sarikhani, E.; Meyer, C. E.; Haghniaz, R.; Badv, M.; Annabi, N.; Khademhosseini, A.; Weiss, P. S.Engineered hemostatic biomaterials for sealing wounds. Chem. Rev., 2022, 122(15), 12864–12903.
Cao, H.; Duan, L. X.; Zhang, Y.; Cao, J.; Zhang, K.Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther., 2021, 6(1), 426.
Fonouni, H.; Kashfi, A.; Majlesara, A.; Stahlheber, O.; Konstantinidis, L.; Kraus, T. W.; Mehrabi, A.; Oweira, H.Analysis of the hemostatic potential of modern topical sealants on arterial and venous anastomoses: An experimental porcine study. J. Mater. Sci. Mater. Med., 2017, 28(9), 134.
Ye, I. B.; Thomson, A. E.; Smith, R. A.; Pease, T. J.; Chowdhury, N.; Donahue, J.; Miseo, V.; Jauregui, J. J.; Cavanaugh, D. L.; Koh, E. Y.; Ludwig, S. C.FLOSEAL versus SURGIFLO in lumbar surgery: similar outcomes, different costs in a matched cohort analysis. World Neurosurg., 2023, 177, e425–e432.
Guo, Y. C.; Wang, Y.; Zhao, X. H.; Li, X.; Wang, Q.; Zhong, W.; Mequanint, K.; Zhan, R. X.; Xing, M.; Luo, G. X.Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light. Sci. Adv., 2021, 7(29), eabf9635.
Davidson, B. R.; Burnett, S.; Javed, M. S.; Seifalian, A.; Moore, D.; Doctor, N.Experimental study of a novel fibrin sealant for achieving haemostasis following partial hepatectomy. Br. J. Surg., 2000, 87(6), 790–795.
Lu, Y. J.; Huang, X. W.; Luo, Y. T.; Zhu, R.; Zheng, M.; Yang, J. M.; Bai, S. M.Silk fibroin-based tough hydrogels with strong underwater adhesion for fast hemostasis and wound sealing. Biomacromolecules, 2023, 24(1), 319–331.
Lukin, I.; Erezuma, I.; Maeso, L.; Zarate, J.; Desimone, M. F.; Al-Tel, T. H.; Dolatshahi-Pirouz, A.; Orive, G.Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics, 2022, 14(6), 1177.
Mikhailov, O. V.Gelatin as it is: history and modernity. Int. J. Mol. Sci., 2023, 24(4), 3583.
Lewis, K. M.; Atlee, H.; Mannone, A.; Lin, L.; Goppelt, A.Efficacy of hemostatic matrix and microporous polysaccharide hemospheres. J. Surg. Res., 2015, 193(2), 825–830.
Zheng, F.; Yang, X.; Li, J.; Tian, Z. H.; Xiao, B.; Yi, S. X.; Duan, L.Coordination with zirconium: a facile approach to improve the mechanical properties and thermostability of gelatin hydrogel. Int. J. Biol. Macromol., 2022, 205, 595–603.
Mũnoz, Z.; Shih, H.; Lin, C. C.Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation. Biomater. Sci., 2014, 2(8), 1063–1072.
Van Den Bulcke, A. I.; Bogdanov, B.; De Rooze, N.; Schacht, E. H.; Cornelissen, M.; Berghmans, H.Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000, 1(1), 31–38.
Chen, Z.; Wu, H.; Wang, H. B.; Zaldivar-Silva, D.; Agüero, L.; Liu, Y. F.; Zhang, Z. R.; Yin, Y. C.; Qiu, B. W.; Zhao, J. L.; Lu, X. H.; Wang, S. G.An injectable anti-microbial and adhesive hydrogel for the effective noncompressible visceral hemostasis and wound repair. Mater. Sci. Eng. C, 2021, 129, 112422.
Ying, G. L.; Jiang, N.; Maharjan, S.; Yin, Y. X.; Chai, R. R.; Cao, X.; Yang, J. Z.; Miri, A. K.; Hassan, S.; Zhang, Y. S.Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv. Mater., 2018, 30(50), e1805460.
Kurian, A. G.; Singh, R. K.; Patel, K. D.; Lee, J. H.; Kim, H. W.Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater., 2022, 8, 267–295.
Wang, Y. M.; Xu, Y. Q.; Zhang, Z.; He, Y.; Hou, Z. K.; Zhao, Z. B.; Deng, J.; Qing, R.; Wang, B. C.; Hao, S. L.Rational design of high-performance keratin-based hemostatic agents. Adv. Healthc. Mater., 2022, 11(15), e2200290.
Feng, C. C.; Lu, W. F.; Liu, Y. C.; Liu, T. H.; Chen, Y. C.; Chien, H. W.; Wei, Y.; Chang, H. W.; Yu, J.A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. J. Mater. Chem. B, 2022, 10(25), 4878–4888.
Yang, K. C.; Huang, L. P.; Huang, M. C.; Thyparambil, A. A.; Wei, Y.Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids Surf. B Biointerfaces, 2020, 190, 110951.
Ye, W. J.; Qin, M.; Qiu, R. M.; Li, J. S.Keratin-based wound dressings: from waste to wealth. Int. J. Biol. Macromol., 2022, 211, 183–197.
Gholipourmalekabadi, M.; Sapru, S.; Samadikucha-ksaraei, A.; Reis, R. L.; Kaplan, D. L.; Kundu, S. C.Silk fibroin for skin injury repair: where do things stand?Adv. Drug Deliv. Rev., 2020, 153, 28–53.
Lehmann, T.; Vaughn, A. E.; Seal, S.; Liechty, K. W.; Zgheib, C.Silk fibroin-based therapeutics for impaired wound healing. Pharmaceutics, 2022, 14(3), 651.
Wang, Z. J.; Hu, W. K.; Du, Y. Y.; Xiao, Y.; Wang, X. H.; Zhang, S. M.; Wang, J. L.; Mao, C. B.Green gas-mediated cross-linking generates biomolecular hydrogels with enhanced strength and excellent hemostasis for wound healing. ACS Appl. Mater. Interfaces, 2020, 12(12), 13622–13633.
Zhang, S. H.; Li, J. W.; Chen, S. J.; Zhang, X. Y.; Ma, J. W.; He, J. M.Oxidized cellulose-based hemostatic materials. Carbohydr. Polym., 2020, 230, 115585.
杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展. 材料导报, 2019, 33(7), 1227–1233.
Isogai, A.Emerging nanocellulose technologies: recent developments. Adv. Mater., 2021, 33(28), e2000630.
Elangwe, C. N.; Morozkina, S. N.; Olekhnovich, R. O.; Krasichkov, A.; Polyakova, V. O.; Uspenskaya, M. V.A review on chitosan and cellulose hydrogels for wound dressings. Polymers, 2022, 14(23), 5163.
Liu, S.; Ahmad Qamar, S.; Qamar, M.; Basharat, K.; Bilal, M.Engineered nanocellulose-based hydrogels for smart drug delivery applications. Int. J. Biol. Macromol., 2021, 181, 275–290.
Shi, X. K.; Chen, Z. P.; He, Y. H.; Lu, Q.; Chen, R. M.; Zhao, C.; Dong, D.; Sun, Y. P.; He, H.Dual light-responsive cellulose nanofibril-based in situ hydrogel for drug-resistant bacteria infected wound healing. Carbohydr. Polym., 2022, 297, 120042.
Lv, S. H.; Zhang, S. S.; Zuo, J. J.; Liang, S.; Yang, J. H.; Wang, J. L.; Wei, D. Q.Progress in preparation and properties of chitosan-based hydrogels. Int. J. Biol. Macromol., 2023, 242, 124915.
Liu, Y. H.; Niu, H. Y.; Wang, C. W.; Yang, X. X.; Li, W. T.; Zhang, Y. X.; Ma, X. J.; Xu, Y. J.; Zheng, P. F.; Wang, J. W.; Dai, K. R.Bio-inspired, bio-degradable adenosine 5’-diphosphate-modified hyaluronic acid coordinated hydrophobic undecanal-modified chitosan for hemostasis and wound healing. Bioact. Mater., 2022, 17, 162–177.
Fan, P.; Zeng, Y. B.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. G.Chitosan-based hemostatic hydrogels: the concept, mechanism, application, and prospects. Molecules, 2023, 28(3), 1473.
Xia, L. X.; Wang, S.; Jiang, Z. W.; Chi, J. H.; Yu, S. Q.; Li, H. J.; Zhang, Y. J.; Li, L. H.; Zhou, C. R.; Liu, W. S.; Han, B. Q.Hemostatic performance of chitosan-based hydrogel and its study on biodistribution and biodegradability in rats. Carbohydr. Polym., 2021, 264, 117965.
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B.Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849), 426–430.
Geng, H. M.; Cui, J. W.; Hao, J. C.Mussel-inspired hydrogels for tissue healing. Acta Chim. Sinica, 2020, 78(2), 105.
Geng, H. M.; Dai, Q.; Sun, H. F.; Zhuang, L. P.; Song, A. X.; Caruso, F.; Hao, J. C.; Cui, J. W.Injectable and sprayable polyphenol-based hydrogels for controlling hemostasis. ACS Appl. Bio Mater., 2020, 3(2), 1258–1266.
Zhao, X.; Guo, B. L.; Wu, H.; Liang, Y. P.; Ma, P. X.Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun., 2018, 9(1), 2784.
Zhang, Y. P.; Wang, Y.; Chen, L.; Zheng, J.; Fan, X. J.; Xu, X. L.; Zhou, G. H.; Ullah, N.; Feng, X. C.An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing. Biomaterials, 2022, 285, 121546.
Chen, Y. Y.; Wu, L.; Li, P. P.; Hao, X.; Yang, X.; Xi, G. H.; Liu, W.; Feng, Y. K.; He, H. C.; Shi, C. C.Polysaccharide based hemostatic strategy for ultrarapid hemostasis. Macromol. Biosci., 2020, 20(4), e1900370.
Sudhakar, K.; Ji, S. M.; Kummara, M. R.; Han, S. S.Recent progress on hyaluronan-based products for wound healing applications. Pharmaceutics, 2022, 14(10), 2235.
Wang, L. Y.; Hao, F.; Tian, S. H.; Dong, H. F.; Nie, J.; Ma, G. P.Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings. Carbohydr. Polym., 2022, 291, 119574.
Yang, J. H.; Wang, S. G.Polysaccharide-based multifunctional hydrogel bio-adhesives for wound healing: a review. Gels, 2023, 9(2), 138.
Fan, P. H.; Dong, Q.; Yang, J. F.; Chen, Y.; Yang, H. J.; Gu, S. J.; Xu, W. L.; Zhou, Y. S.Flexible dual-functionalized hyaluronic acid hydrogel adhesives formed in situ for rapid hemostasis. Carbohydr. Polym., 2023, 313, 120854.
Rastogi, P.; Kandasubramanian, B.Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11(4), 042001.
Pourshahrestani, S.; Zeimaran, E.; Kadri, N. A.; Mutlu, N.; Boccaccini, A. R.Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv. Healthc. Mater., 2020, 9(20), e2000905.
Kumar, A.; Sah, D. K.; Khanna, K.; Rai, Y.; Yadav, A. K.; Ansari, M. S.; Bhatt, A. N.A calcium and zinc composite alginate hydrogel for pre-hospital hemostasis and wound care. Carbohydr. Polym., 2023, 299, 120186.
Cao, L. Q.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. P.Egg-box model-based gelation of alginate and pectin: a review. Carbohydr. Polym., 2020, 242, 116389.
Luo, M.; Wang, Y. D.; Xie, C. X.; Lei, B.Multiple coordination-derived bioactive hydrogel with proan-giogenic hemostatic capacity for wound repair. Adv. Healthc. Mater., 2022, 11(18), e2200722.
Ibrahim, M.; Ramadan, E.; Elsadek, N. E.; Emam, S. E.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O. H.; Sarhan, H. A.; Hussein, A. K.; Ishida, T.Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Release, 2022, 351, 215–230.
Spotnitz, W. D.; Burks, S.Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion, 2008, 48(7), 1502–1516.
Bu, Y. Z.; Zhang, L. C.; Sun, G. F.; Sun, F. F.; Liu, J. H.; Yang, F.; Tang, P. F.; Wu, D. C.Tetra-PEG based hydrogel sealants for in vivo visceral hemostasis. Adv. Mater., 2019, 31(28), e1901580.
牛洪; 谢兴益; 何成生; 樊翠蓉; 钟银屏. 聚氨酯水凝胶在生物医学中的应用. 聚氨酯工业, 2004, 5, 6–9.
Wienen, D.; Gries, T.; Cooper, S. L.; Heath, D. E.An overview of polyurethane biomaterials and their use in drug delivery. J. Control. Release, 2023, 363, 376–388.
Zou, F. X.; Wang, Y. S.; Zheng, Y. D.; Xie, Y. J.; Zhang, H.; Chen, J. S.; Hussain, M. I.; Meng, H. Y.; Peng, J.A novel bioactive polyurethane with controlled degradation and L-Arg release used as strong adhesive tissue patch for hemostasis and promoting wound healing. Bioact. Mater., 2022, 17, 471–487.
Wang, M.; Hu, J. J.; Ou, Y. C.; He, X. L.; Wang, Y. J.; Zou, C. Y.; Jiang, Y. L.; Luo, F.; Lu, D.; Li, Z.; Li, J. H.; Tan, H.Shape-recoverable hyaluronic acid-waterborne polyurethane hybrid cryogel accelerates hemostasis and wound healing. ACS Appl. Mater. Interfaces, 2022, 14(15), 17093–17108.
0
浏览量
168
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构