浏览全部资源
扫码关注微信
1..南京工业大学化工学院,生物与制药工程学院,材料化学工程国家重点实验室,南京 211816
2..浙江省智能织物与柔性互联重点实验室,浙江省轻工业品质量检验研究院,杭州 310018
3..泗阳糖宝新材料科技有限公司,宿迁市(糖宝)糖基化新材料工程技术研究中心,宿迁 223700
*任晓乾,E-mail: xqren@njtech.edu.cn;叶翔宇,E-mail: yexiangyu1987@163.com;方艳,E-mail: fangyan@njtech.edu.cn
*任晓乾,E-mail: xqren@njtech.edu.cn;叶翔宇,E-mail: yexiangyu1987@163.com;方艳,E-mail: fangyan@njtech.edu.cn
*任晓乾,E-mail: xqren@njtech.edu.cn;叶翔宇,E-mail: yexiangyu1987@163.com;方艳,E-mail: fangyan@njtech.edu.cn
纸质出版日期:2024-07-20,
收稿日期:2023-11-02,
录用日期:2023-12-26
扫 描 看 全 文
焦苏亚, 陈岱滨, 吴昊, 姜岷, 任晓乾, 叶翔宇, 方艳. 抗菌细菌纤维素功能材料的制备及应用研究进展. 高分子通报, 2024, 37(7), 851–867
Jiao, S. Y.; Chen, D. B.; Wu, H.; Jiang, M.; Ren, X. Q.; Ye, X. Y.; Fang, Y. Progress on preparation and applications of antibacterial bacterial cellulose. Polym. Bull. (in Chinese), 2024, 37(7), 851–867
焦苏亚, 陈岱滨, 吴昊, 姜岷, 任晓乾, 叶翔宇, 方艳. 抗菌细菌纤维素功能材料的制备及应用研究进展. 高分子通报, 2024, 37(7), 851–867 DOI: 10.14028/j.cnki.1003-3726.2024.23.372.
Jiao, S. Y.; Chen, D. B.; Wu, H.; Jiang, M.; Ren, X. Q.; Ye, X. Y.; Fang, Y. Progress on preparation and applications of antibacterial bacterial cellulose. Polym. Bull. (in Chinese), 2024, 37(7), 851–867 DOI: 10.14028/j.cnki.1003-3726.2024.23.372.
细菌纤维素抗菌后功能化改性原位改性共混再生改性
Bacterial celluloseAntibacterialPost-functionalization modificationIn situ modificationBlending and regeneration
Jabbari, F.; Babaeipour, V.Bacterial cellulose as a potential biopolymer for wound care. A review. Int. J. Polym. Mater. Polym. Biomater., 2024, 73(6), 455–477.
Zhong, C. Y.Industrial-scale production and applications of bacterial cellulose. Front. Bioeng. Biotechnol., 2020, 8, 605374.
Bernardelli de Mattos, I.; Nischwitz, S. P.; Tuca, A. C.; Groeber-Becker, F.; Funk, M.; Birngruber, T.; Mautner, S. I.; Kamolz, L. P.; Holzer, J. C. J.Delivery of antiseptic solutions by a bacterial cellulose wound dressing: uptake, release and antibacterial efficacy of octenidine and povidone-iodine. Burns, 2020, 46(4), 918–927.
Morais, E. S.; Silva, N. H. C. S.; Sintra, T. E.; Santos, S. A. O.; Neves, B. M.; Almeida, I. F.; Costa, P. C.; Correia-Sá, I.; Ventura, S. P. M.; Silvestre, A. J. D.; Freire, M. G.; Freire, C. S. R.Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydr. Polym., 2019, 206, 187–197.
Shi, Z. J.; Zhang, Y.; Phillips, G. O.; Yang, G.Utilization of bacterial cellulose in food. Food Hydrocoll., 2014, 35, 539–545.
Mautner, A.; Bismarck, A.Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants. Carbohydr. Polym., 2021, 251, 117130.
da Silva, C. J. G.; de Medeiros, A. D. M.; de Amorim, J. D. P.; Almeida do Nascimento, H.; Converti, A.; Costa, A. F. S.; Sarubbo, L. A.Bacterial cellulose biotextiles for the future of sustainable fashion: a review. Environ. Chem. Lett., 2021, 19(4), 2967–2980.
Stanescu, P. O.; Radu, I. C.; Alexa, R. L.; Hudita, A.; Tanasa, E.; Ghitman, J.; Stoian, O.; Tsatsakis, A.; Ginghina, O.; Zaharia, C.; Shtilman, M.; Mezhuev, Y.; Galateanu, B.Novel chitosan and bacterial cellulose biocomposites tailored with polymeric nanoparticles for modern wound dressing development. Drug Deliv., 2021, 28(1), 1932–1950.
Charpentier, P. A.; Maguire, A.; Wan, W. K.Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci., 2006, 252(18), 6360–6367.
Numata, Y.; Mazzarino, L.; Borsali, R.A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int. J. Pharm., 2015, 486(1-2), 217–225.
Chantereau, G.; Sharma, M.; Abednejad, A.; Vilela, C.; Costa, E. M.; Veiga, M.; Antunes, F.; Pintado, M. M.; Sèbe, G.; Coma, V.; Freire, M. G.; Freire, C. S. R.; Silvestre, A. J. D.Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J. Mol. Liq., 2020, 302, 112547.
Gedarawatte, S. T. G.; Ravensdale, J. T.; Johns, M. L.; Azizi, A.; Al-Salami, H.; Dykes, G. A.; Coorey, R.Effectiveness of bacterial cellulose in controlling purge accumulation and improving physicochemical, microbiological, and sensorial properties of vacuum-packaged beef. J. Food Sci., 2020, 85(7), 2153–2163.
Cheung, K. M.; Jiang, Z. L.; Ngai, T.Edible, strong, and low-hygroscopic bacterial cellulose derived from biosynthesis and physical modification for food packaging. J. Sci. Food Agric., 2023, 103(13), 6625–6639.
Alves, A. A.; Silva, W. E.; Belian, M. F.; Lins, L. S. G.; Galembeck, A.Bacterial cellulose membranes for environmental water remediation and industrial wastewater treatment. Int. J. Environ. Sci. Technol., 2020, 17(9), 3997–4008.
Jiang, J.; Zhu, J.; Zhang, Q.; Zhan, X.; Chen, F.A shape recovery zwitterionic bacterial cellulose aerogel with superior performances for water remediation. Langmuir., 2019, 35(37), 11959–11967.
Kim, H. J.; Yim, E. C.; Kim, J. H.; Kim, S. J.; Park, J. Y.; Oh, I. K.Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy, 2017, 33, 130–137.
Zhang, J. T.; Hu, S. M.; Shi, Z. J.; Wang, Y. F.; Lei, Y. Q.; Han, J.; Xiong, Y.; Sun, J.; Zheng, L.; Sun, Q. J.; Yang, G.; Wang, Z. L.Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy, 2021, 89, 106354.
范玲玲, 黎槟瑞, 张浩伟, 方艳. 表面抗菌功能涂层的构建及在生物医用材料中的应用研究. 高分子学报, 2021, 52(3), 253–271.
王杰, 范玲玲, 吴昊, 信丰学, 马江锋, 姜岷, 方艳. 基于功能高分子材料的生物被膜构建及其生物转化应用进展. 生物加工过程, 2023, 21(2), 133–143.
Gao, H.; Wang, J.; Wu, H.; Xin, F. X.; Zhang, W. M.; Jiang, M.; Fang, Y.Biofilm-integrated glycosylated membrane for biosuccinic acid production. ACS Appl. Bio Mater., 2021, 4(10), 7517–7523.
Cabañas-Romero, L. V.; Valls, C.; Valenzuela, S. V.; Roncero, M. B.; Javier Pastor, F. I.; Diaz, P.; Martínez, J.Bacterial cellulose-chitosan paper with antimicrobial and antioxidant activities. Biomacromolecules, 2020, 21(4), 1568–1577.
Suneetha, M.; Won, S. Y.; Zo, S. M.; Han, S. S.Fungal carboxymethyl chitosan-impregnated bacterial cellulose hydrogel as wound-dressing agent. Gels, 2023, 9(3), 184.
Wei, B.; Yang, G.; Hong, F.Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym., 2011, 84(1), 533–538.
Shao, W.; Liu, H.; Wang, S. X.; Wu, J. M.; Huang, M.; Min, H. H.; Liu, X. F.Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr. Polym., 2016, 145, 114–120.
Napavichayanun, S.; Yamdech, R.; Aramwit, P.The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies. Arch. Dermatol. Res., 2016, 308(2), 123–132.
Shen, Z. P.; Zhu, W.; Huang, Y. J.; Zhang, J. J.; Wu, Y. F.; Pan, Y. Z.; Yang, G.; Wang, D.; Li, Y.; Tang, B. Z.Visual multifunctional aggregation-induced emission-based bacterial cellulose for killing of multidrug-resistant bacteria. Adv. Health. Mater., 2023, 12(21), 2300045.
Homwan, W.; Chaisen, K.; Audtarat, S.; Suwonnachot, W.; Dasri, T.Preparation and antibacterial property of silver nanoparticles loaded into bacterial cellulose. Mater. Res. Express, 2023, 10(5), 055004.
Li, Y.; Tian, Y.; Zheng, W. S.; Feng, Y.; Huang, R.; Shao, J. X.; Tang, R. B.; Wang, P.; Jia, Y. X.; Zhang, J. J.; Zheng, W. F.; Yang, G.; Jiang, X. Y.Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small, 2017, 13(27), 1700130.
Anwar, Y.; Ullah, I.; Alsheri, M.; AlJohny, B. O.Ex-situ synthesis of bacterial cellulose-copper oxide nanoparticles for effective chemical and biological properties. Desalin. Water Treat., 2020, 197, 182–190.
Melnikova, N.; Knyazev, A.; Nikolskiy, V.; Peretyagin, P.; Belyaeva, K.; Nazarova, N.; Liyaskina, E.; Malygina, D.; Revin, V.Wound healing composite materials of bacterial cellulose and zinc oxide nanoparticles with immobilized betulin diphosphate. Nanomaterials, 2021, 11(3), 713.
Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F.Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym., 2017, 164, 214–221.
Zhang, G. M.; Chen, G. K.; Dong, M.; Nie, J.; Ma, G. P.Multifunctional bacterial cellulose/covalent organic framework composite membranes with antifouling and antibacterial properties for dye separation. ACS Appl. Mater. Interfaces, 2023, 15(27), 32903–32915.
Bayazidi, P.; Almasi, H.; Asl, A. K.Immobilization of lysozyme on bacterial cellulose nanofibers: characteristics, antimicrobial activity and morphological properties. Int. J. Biol. Macromol., 2018, 107, 2544–2551.
Ataide, J. A.; de Carvalho, N. M.; Rebelo, M. A.; Chaud, M. V.; Grotto, D.; Gerenutti, M.; Rai, M.; Mazzola, P. G.; Jozala, A. F.Bacterial nanocellulose loaded with bromelain: assessment of antimicrobial, antioxidant and physical-chemical properties. Sci. Rep., 2017, 7(1), 18031.
Wang, Y. S.; Wang, C.; Xie, Y. J.; Yang, Y. Y.; Zheng, Y. D.; Meng, H. Y.; He, W.; Qiao, K.Highly transparent, highly flexible composite membrane with multiple antimicrobial effects used for promoting wound healing. Carbohydr. Polym., 2019, 222, 114985.
Arias, S. L.; Devorkin, J.; Spear, J. C.; Civantos, A.; Allain, J. P.Bacterial envelope damage inflicted by bioinspired nanostructures grown in a hydrogel. ACS Appl. Bio Mater., 2020, 3(11), 7974–7988.
Liu, S.; Chu, M. L.; Zhu, Y. J.; Li, L. F.; Wang, L.; Gao, H. C.; Ren, L.A novel antibacterial cellulose based biomaterial for hernia mesh applications. RSC Adv., 2017, 7(19), 11601–11607.
Gao, C.; Yan, T.; Du, J.; He, F.; Luo, H. L.; Wan, Y. Z.Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocoll., 2014, 36, 204–211.
Hasan, N.; Lee, J.; Ahn, H. J.; Hwang, W. R.; Bahar, M. A.; Habibie, H.; Amir, M. N.; Lallo, S.; Son, H. J.; Yoo, J. W.Nitric oxide-releasing bacterial cellulose/chitosan crosslinked hydrogels for the treatment of polymicrobial wound infections. Pharmaceutics, 2021, 14(1), 22.
Wahid, F.; Bai, H.; Wang, F. P.; Xie, Y. Y.; Zhang, Y. W.; Chu, L. Q.; Jia, S. R.; Zhong, C.Facile synthesis of bacterial cellulose and polyethyleneimine based hybrid hydrogels for antibacterial applications. Cellulose, 2020, 27(1), 369–383.
Yang, Z. F.; Huang, R. K.; Zheng, B. N.; Guo, W. T.; Li, C. K.; He, W. Y.; Wei, Y. Q.; Du, Y.; Wang, H. M.; Wu, D. C.; Wang, H.Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv. Sci., 2021, 8(8), 2003627.
Zhang, S. M.; Li, L.; Ren, X. H.; Huang, T. S.N-halamine modified multiporous bacterial cellulose with enhanced antibacterial and hemostatic properties. Int. J. Biol. Macromol., 2020, 161, 1070–1078.
Hamedi, S.; Shojaosadati, S. A.; Najafi, V.; Alizadeh, V.A novel double-network antibacterial hydrogel based on aminated bacterial cellulose and schizophyllan. Carbohydr. Polym., 2020, 229, 115383.
Rouabhia, M.; Asselin, J.; Tazi, N.; Messaddeq, Y.; Levinson, D.; Zhang, Z.Production of biocompatible and antimicrobial bacterial cellulose polymers func-tionalized by RGDC grafting groups and gentamicin. ACS Appl. Mater. Interfaces, 2014, 6(3), 1439–1446.
Xie, Y. J.; Qiao, K.; Yue, L. N.; Tang, T.; Zheng, Y. D.; Zhu, S. H.; Yang, H. Y.; Fang, Z. Y.A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound. Bioact. Mater., 2022, 17, 248–260.
Deng, L. L.; Wang, B. X.; Li, W. Y.; Han, Z. L.; Chen, S. Y.; Wang, H. P.Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing. Int. J. Biol. Macromol., 2022, 217, 77–87.
Yuan, H. B.; Chen, L.; Hong, F. F.A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl. Mater. Interfaces, 2020, 12(3), 3382–3392.
Liu, Y.; Wang, S. S.; Wang, Z. P.; Yao, Q. F.; Fang, S. S.; Zhou, X. F.; Yuan, X.; Xie, J. P.The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. J. Mater. Chem. B, 2020, 8(22), 4846–4850.
Zhang, L.; Zheng, S.; Hu, Z. H.; Zhong, L. L.; Wang, Y.; Zhang, X. M.; Xue, J. Q.Preparation of polyvinyl alcohol/bacterial-cellulose-coated biochar—nanosilver antibacterial composite membranes. Appl. Sci., 2020, 10(3), 752.
Yang, X. L.; Huang, J. J.; Chen, C. T.; Zhou, L.; Ren, H. J.; Sun, D. P.Biomimetic design of double-sided functionalized silver nanoparticle/bacterial cellulose/hydroxyapatite hydrogel mesh for temporary cranioplasty. ACS Appl. Mater. Interfaces, 2023, 15(8), 10506–10519.
Wu, C. N.; Fuh, S. C.; Lin, S. P.; Lin, Y. Y.; Chen, H. Y.; Liu, J. M.; Cheng, K. C.TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules, 2018, 19(2), 544–554.
Windarsih, A.; Indrianingsih, A. W.; Maryana, R.; Apriyana, W.; Rosyida, V. T.; Nurhayati, S.; Jatmiko, T. H.; Ratih, D.; Suwanto, A.Gold modified bacterial cellulose from coconut water waste and its antibacterial activity. Waste Biomass Valorization, 2022, 13(10), 4157–4164.
Shahriari-Khalaji, M.; Hong, S. Y.; Hu, G. Q.; Ji, Y.; Hong, F. F.Bacterial nanocellulose-enhanced alginate double-network hydrogels cross-linked with six metal cations for antibacterial wound dressing. Polymers, 2020, 12(11), 2683.
Zhao, B. X.; Yuan, M. X.; Wang, L. Z.; Liu, Z. M.; Fu, X. D.; Mukhtar, H.; Zhu, C. L.; Sun, H.; Yao, M.; Mou, H. J.Antibacterial activity of bifunctional bacterial cellulose composite grafted with glucose oxidase and L-arginine. Cellulose, 2023, 30(14), 8973–8984.
Zhang, P.; Chen, L.; Zhang, Q. S.; Hong, F. F.Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front. Microbiol., 2016, 7, 260.
Zhou, C.; Yang, Z. F.; Xun, X. W.; Ma, L.; Chen, Z. J.; Hu, X. M.; Wu, X. D.; Wan, Y. Z.; Ao, H. Y.De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioact. Mater., 2022, 13, 212–222.
Gao, G.; Niu, S. F.; Liu, T. T.; Zhang, Y.; Zhao, X. Q.; Shi, Z. S.; Chen, S.; Wu, M. M.; Li, G. Q.; Ma, T.Fabrication of bacterial cellulose composites with antimicrobial properties by in situ modification utilizing the specific function-suspension containing water-insoluble magnolol. Int. J. Biol. Macromol., 2023, 239, 124329.
Fadakar Sarkandi, A.; Montazer, M.; Harifi, T.; Mahmoudi Rad, M.Innovative preparation of bacterial cellulose/silver nanocomposite hydrogels: in situ green synthesis, characterization, and antibacterial properties. J. Appl. Polym. Sci., 2021, 138(6), 49824.
Wan, Y. Z.; Yang, S. S.; Wang, J.; Gan, D. Q.; Gama, M.; Yang, Z. W.; Zhu, Y.; Yao, F. L.; Luo, H. L.Scalable synthesis of robust and stretchable composite wound dressings by dispersing silver nanowires in continuous bacterial cellulose. Compos. Part B Eng., 2020, 199, 108259.
Shen, H. Y.; Liao, S. Q.; Jiang, C. Y.; Zhang, J. W.; Wei, Q. F.; Ghiladi, R. A.; Wang, Q. Q.In situ grown bacterial cellulose/MoS2 composites for multi-contaminant wastewater treatment and bacteria inactivation. Carbohydr. Polym., 2022, 277, 118853.
刘梦迪. 微生物合成功能性含氮纳米纤维素的研究. 南京: 南京理工大学, 2021.
Liu, X. G.; Wu, M.; Wang, M.; Hu, Q. D.; Liu, J. J.; Duan, Y. K.; Liu, B.Direct synthesis of photosensitizable bacterial cellulose as engineered living material for skin wound repair. Adv. Mater., 2022, 34(13), 2109010.
Shao, W.; Liu, H.; Liu, X. F.; Wang, S. X.; Wu, J. M.; Zhang, R.; Min, H. H.; Huang, M.Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym., 2015, 132, 351–358.
Yang, X. N.; Xue, D. D.; Li, J. Y.; Liu, M.; Jia, S. R.; Chu, L. Q.; Wahid, F.; Zhang, Y. M.; Zhong, C.Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr. Polym., 2016, 136, 1152–1160.
Barjasteh, M.; Dehnavi, S. M.; Ahmadi Seyedkhani, S.; Rahnamaee, S. Y.; Golizadeh, M.Improved biological activities of dual nanofibrous chitosan/bacterial cellulose wound dressing by a novel silver-based metal-organic framework. Surf. Interfaces, 2023, 36, 102631.
Zhang, S. M.; Hao, J. C.; Ding, F.; Ren, X. H.Nanocatalyst doped bacterial cellulose-based therm-osensitive nanogel with biocatalytic function for antibacterial application. Int. J. Biol. Macromol., 2022, 195, 294–301.
Li, Y.; Yang, Z. F.; Sun, Q.; Xu, R. J.; Li, R. J.; Wu, D. C.; Huang, R. K.; Wang, F.; Li, Y.Biocompatible cryogel with good breathability, exudate management, antibacterial and immunomodulatory properties for infected diabetic wound healing. Adv. Sci., 2023, 10(31), 2304243.
Xie, Y. J.; Yue, L. N.; Zheng, Y. D.; Zhao, L.; Liang, C. Y.; He, W.; Liu, Z. W.; Sun, Y.; Yang, Y. Y.The antibacterial stability of poly(dopamine) in situ reduction and chelation nano-Ag based on bacterial cellulose network template. Appl. Surf. Sci., 2019, 491, 383–394.
Deng, L. L.; Huang, Y. J.; Chen, S. Y.; Han, Z. L.; Han, Z. Z.; Jin, M. T.; Qu, X. Y.; Wang, B. X.; Wang, H. P.; Gu, S.Bacterial cellulose-based hydrogel with antibacterial activity and vascularization for wound healing. Carbohydr. Polym., 2023, 308, 120647.
Zmejkoski, D. Z.; Marković, Z. M.; Mitić, D. D.; Zdravković, N. M.; Kozyrovska, N. O.; Bugárová, N.; Todorović Marković, B. M.Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing. J. Biomed. Mater. Res. Part B Appl. Biomater., 2022, 110(8), 1796–1805.
Umar Aslam Khan, M.; Haider, S.; Haider, A.; Izwan Abd Razak, S.; Rafiq Abdul Kadir, M.; Shah, S. A.; Javed, A.; Shakir, I.; Al-Zahrani, A. A.Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering. Arab. J. Chem., 2021, 14(2), 102924.
肖健. 以细菌纤维素为模板的MBGs三维网络型纳米管支架的制备与性能研究. 天津: 天津大学, 2019.
Sajjad, W.; Khan, T.; Ul-Islam, M.; Khan, R.; Hussain, Z.; Khalid, A.; Wahid, F.Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohyd. Polym., 2019, 206, 548–556.
孙东平, 杨加志, 李骏, 周伶俐, 于俊伟. 载银细菌纤维素抗菌敷料的制备及其抗菌性能的研究. 生物医学工程学杂志, 2009, 26(5): 1034–1038.
Li, X.; Tang, J. Y.; Bao, L. H.; Chen, L.; Hong, F. F.Performance improvements of the BNC tubes from unique double-silicone-tube bioreactors by introducing chitosan and heparin for application as small-diameter artificial blood vessels. Carbohydr. Polym., 2017, 178, 394–405.
Tang, J. Y.; Bao, L. H.; Li, X.; Chen, L.; Hong, F. F.Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J. Mater. Chem. B, 2015, 3(43), 8537–8547.
Almeida, T.; Karamysheva, A.; Valente, B. F. A.; Silva, J. M.; Braz, M.; Almeida, A.; Silvestre, A. J. D.; Vilela, C.; Freire, C. S. R.Biobased ternary films of thermoplastic starch, bacterial nanocellulose and Gallic acid for active food packaging. Food Hydrocoll., 2023, 144, 108934.
Yin, N.; Du, R. P.; Zhao, F. K.; Han, Y.; Zhou, Z. J.Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitoo-ligosaccharide. Carbohydr. Polym., 2020, 229, 115520.
Jipa, I. M.; Stoica-Guzun, A.; Stroescu, M.Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Sci. Technol., 2012, 47(2), 400–406.
Zhu, H. X.; Jia, S. R.; Yang, H. J.; Tang, W. H.; Jia, Y. Y.; Tan, Z. L.Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ɛ-polylysine. Food Sci. Biotechnol., 2010, 19(6), 1479–1484.
Ma, B.; Chaudhary, J. P.; Zhu, J. G.; Sun, B. J.; Chen, C. T.; Sun, D. P.Construction of silver nanoparticles anchored in carbonized bacterial cellulose with enhanced antibacterial properties. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 611, 125845.
Wahid, F.; Zhao, X. Q.; Cui, J. X.; Wang, Y. Y.; Wang, F. P.; Jia, S. R.; Zhong, C.Fabrication of bacterial cellulose with TiO2-ZnO nanocomposites as a multifunctional membrane for water remediation. J. Colloid Interface Sci., 2022, 620, 1–13.
Li, J. W.; Zhang, X. F.; Zhao, Y. D.; Ma, M. Z.; Song, Y.; Zheng, B.; Zhou, R. S.; (Ken) Ostrikov, K.Nisin electroadsorption-enabled multifunctional bacterial cellulose membranes for highly efficient removal of organic and microbial pollutants in water. Chem. Eng. J., 2022, 440, 135922.
Jiang, Q. S.; Ghim, D.; Cao, S. S.; Tadepalli, S.; Liu, K. K.; Kwon, H.; Luan, J. Y.; Min, Y. J.; Jun, Y. S.; Singamaneni, S.Photothermally active reduced graphene oxide/bacterial nanocellulose composites as biofouling-resistant ultrafiltration membranes. Environ. Sci. Technol., 2019, 53(1), 412–421.
Chen, S. Q.; Wang, Y. D.; Fei, B.; Long, H. F.; Wang, T.; Zhang, T. H.; Chen, L.Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane. Chem. Eng. J., 2022, 430, 131980.
Fatma, B.; Andrabi, S. M.; Gupta, S.; Verma, V.; Kumar, A.; Pitsalidis, C.; Garg, A.Biocompatible, breathable and degradable microbial cellulose based triboelectric nanogenerator for wearable transient electronics. Nano Energy, 2023, 114, 108628.
Sun, J. Y.; Xiu, K. H.; Wang, Z. Y.; Hu, N.; Zhao, L. B.; Zhu, H.; Kong, F. Z.; Xiao, J. L.; Cheng, L. J.; Bi, X. Y.Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy, 2023, 108, 108215.
0
浏览量
92
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构