浏览全部资源
扫码关注微信
1..重庆交通大学材料科学与工程学院,重庆 400074
2..中国工程物理研究院化学材料研究所,绵阳 621900
3.. Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Mo 63110, USA
*崔旭东,E-mail: xudcui@163.com
王锋,E-mail: wfbgc@cqjtu.edu.cn
黄炎昊,E-mail: huangyh@cqjtu.edu.cn
纸质出版日期:2024-06,
收稿日期:2023-11-10,
录用日期:2023-12-28
扫 描 看 全 文
黄宇, 胥娥, 熊璐璐, 况涵钊, 郑海, 崔旭东, 王锋, 黄炎昊, 夏小超. 基于主/侧链结构设计的偶氮苯聚醚制备及其光致变色性能研究. 高分子通报, 2024, 37(6), 808–822
Huang, Y.; Xu, E.; Xiong, L. L.; Kuang, H. Z.; Zheng, H.; Cui, X. D.; Wang, F.; Huang, Y. H.; Xia, X. C. Preparation and study on photochromic performance of azobenzene polyether based on backbone/branched chain structure designing. Polym. Bull. (in Chinese), 2024, 37(6), 808–822
黄宇, 胥娥, 熊璐璐, 况涵钊, 郑海, 崔旭东, 王锋, 黄炎昊, 夏小超. 基于主/侧链结构设计的偶氮苯聚醚制备及其光致变色性能研究. 高分子通报, 2024, 37(6), 808–822 DOI: 10.14028/j.cnki.1003-3726.2024.23.381.
Huang, Y.; Xu, E.; Xiong, L. L.; Kuang, H. Z.; Zheng, H.; Cui, X. D.; Wang, F.; Huang, Y. H.; Xia, X. C. Preparation and study on photochromic performance of azobenzene polyether based on backbone/branched chain structure designing. Polym. Bull. (in Chinese), 2024, 37(6), 808–822 DOI: 10.14028/j.cnki.1003-3726.2024.23.381.
开环聚合聚醚光致变色偶氮苯顺反异构
Ring-opening polymerizationPolyetherPhotochromismAzobenzeneCis-trans isomerism
Cui, B. B.; Guo, C. P.; Zhang, Z. H.; Fu, G. D.Construction of a novel self-bleaching photochromic hydrogel embraced within the Zn-MOF@WO3 junction for assembling UV-irradiated smart rewritable device. Chem. Eng. J., 2023, 455, 140822.
Fan, J.; Bao, B. W.; Wang, Z. H.; Li, H. Q.; Wang, Y.; Chen, Y. X.; Wang, W.; Yu, D.Flexible, switchable and wearable image storage device based on light responsive textiles. Chem. Eng. J., 2021, 404, 126488.
Bai, X.; Cun, Y. K.; Xu, Z.; Zi, Y. Z.; Ali Haider, A.; Ullah, A.; Khan, I.; Qiu, J. B.; Song, Z. G.; Yang, Z. W.Multiple anti-counterfeiting and optical storage of reversible dual-mode luminescence modification in photochromic CaWO4: Yb3+, Er3+, Bi3+ phosphor. Chem. Eng. J., 2022, 429, 132333.
Jin, K. F.; Ji, X.; Yang, T. T.; Zhang, J. M.; Tian, W. G.; Yu, J.; Zhang, X.; Chen, Z. Y.; Zhang, J.Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting. Chem. Eng. J., 2021, 406, 126794.
Vuori, S.; Colinet, P.; Norrbo, I.; Steininger, R.; Saarinen, T.; Palonen, H.; Paturi, P.; Rodrigues, L. C. V.; Göttlicher, J.; Le Bahers, T.; Lastusaari, M.Detection of X-ray doses with color-changing hackmanites: mechanism and application. Adv. Opt. Mater., 2021, 9(20), 2100762.
Shen, X. Y.; Akbarzadeh, A.; Hu, Q.; Shi, C.; Jin, Y.; Ge, M. Q.Novel photo-responsive composite fibers fabricated by facile wet-spinning process for UV detection and high-level encryption. J. Lumin., 2022, 251, 119179.
Bar, N.; Chowdhury, P.; Roy, D.; Adhikari, S.; Mondal, S.; Das, G. K.; Chandra, S. K.Photochromism of dye containing Schiff base-metal complex: a revisit through spectro-kinetic, thermodynamic and theoretical analyses for the design of a molecular logic gate. J. Photochem. Photobiol. A Chem., 2021, 420, 113505.
Hu, J. X.; Li, Q.; Zhu, H. L.; Gao, Z. N.; Zhang, Q.; Liu, T.; Wang, G. M.Achieving large thermal hysteresis in an anthracene-based manganese (II) complex via photo-induced electron transfer. Nat. Commun., 2022, 13, 2646.
Liu, Y. W.; Yao, S. M.; Sun, C.Synthesis and application of spiropyrane-based photochromic dyes for wool. Fibres. Polym., 2023, 24(2), 641–652.
Song, J. J.; Duan, W.; Chen, Y.; Liu, X. Y.Versatile inorganic oligomer-based photochromic spiropyrane gels. Chin. J. Struct. Chem., 2022, 41(5), 2205037–2205047.
Morsümbül, S.; Emriye Perrin, A. K.; Çay, A.Photochromic microcapsules for textile materials by spray drying—Part 1: production and characterization of photochromic microcapsules. AATCC J. Res., 2021, 8(6), 31–40.
Mandal, M.; Banik, D.; Karak, A.; Manna, S. K.; Mahapatra, A. K.Spiropyran-merocyanine based photochromic fluorescent probes: design, synthesis, and applications. ACS Omega, 2022, 7(42), 36988–37007.
Simpang, A. I.; Ghifari, A.; Han, S. Y.; Hayati, D.; Long, D. X.; Jang, Y. H.; Hong, J.Metal-free organic dyes featuring an azobenzene bridge for photochromic dye-sensitized solar cells. ChemistrySelect, 2023, 8(20), e202204571.
Liu, J.; Han, Z.; Wu, P.; Shang, Y.; Chen, J.; Jia, P.Photochromic azobenzene inverse opal film toward dynamic anti-fake pattern. Molecules, 2023, 28(15), 5881.
Huang, S.; Shen, Y. K.; Bisoyi, H. K.; Tao, Y.; Liu, Z. C.; Wang, M.; Yang, H.; Li, Q.Covalent adaptable liquid crystal networks enabled by reversible ring-opening cascades of cyclic disulfides. J. Am. Chem. Soc., 2021, 143(32), 12543–12551.
Nuñez, D. G.; Fasce, D.; Galante, M. J.; Oyanguren, P. A.Photo-induced changes in azobenzene-containing soft materials. Opt. Mater., 2021, 115, 111032.
Rodriguez, F.; Jelken, J.; Delpouve, N.; Laurent, A.; Garnier, B.; Duvail, J. L.; Lagugné-Labarthet, F.; Ishow, E.Exploiting light interferences to generate micrometer-high superstructures from monomeric azo materials with extensive orientational mobility. Adv. Opt. Mater., 2021, 9(19), 2100525.
Fan, S. J.; Lam, Y.; Yang, J.; Bian, X. Y.; Xin, J. H.Development of photochromic poly(azobenzene)/PVDF fibers by wet spinning for intelligent textile engineering. Surf. Interfaces, 2022, 34, 102383.
Li, G. Y.; Pan, Z. C.; Jia, Z. Y.; Wang, J.; Wang, J. L.; Zhang, N.; Pan, M. W.; Yuan, J. F.An effective approach for fabricating high-strength polyurethane hydrogels with reversible photochromic performance as a photoswitch. New J. Chem., 2021, 45(14), 6386–6396.
Perrier, A.; Maurel, F.; Jacquemin, D.Single molecule multiphotochromism with diarylethenes. Acc. Chem. Res., 2012, 45(8), 1173–1182.
Zhang, Y.; Raymo, F. M.Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods Appl. Fluoresc., 2020, 8(3), 032002.
Du, Q. Y.; Zhao, J.; Jiang, L. J.; Liu, Y.; Zhang, X.; Zhou, X.; Wu, Z. T.; Zhang, L.; Luo, X. L.Molecular design on dual stimuli-responsive azobenzene-containing ionic complexes toward self-healing materials under photoirradiation or humid condition at room temperature. Appl. Mater. Today, 2023, 35, 101945.
Weis, P.; Hess, A.; Kircher, G.; Huang, S.; Auernhammer, G. K.; Koynov, K.; Butt, H. J.; Wu, S.Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers. Chem. Eur. J., 2019, 25(46), 10946–10953.
Xu, J.; Niu, B.; Guo, S.; Zhao, X.; Li, X.; Peng, J.; Deng, W.; Wu, S.; Liu, Y.Influence of chromophoric electron-donating groups on photoinduced solid-to-liquid transitions of azopolymers. Polymers, 2020, 12(4), E901.
Shen, D. F.; Yao, Y.; Zhuang, Q. X.; Lin, S. L.Mainchain alternating azopolymers with fast photo-induced reversible transition behavior. Macromolecules, 2021, 54(21), 10040–10048.
Shang, C.; Xiong, Z. Q.; Liu, S. J.; Yu, W.Molecular dynamics of azobenzene polymer with photoreversible glass transition. Macromolecules, 2022, 55(9), 3711–3722.
Chen, Y.; Liu, Q.; Theato, P.; Wei, J.; Yu, Y. L.A convenient route to prepare reactive azobenzene-containing liquid crystal polymers and photodeformable fibers. Adv. Intell. Syst., 2021, 3(10), 2000254.
Mao, H. Y.; Lin, L.; Ma, Z. P.; Wang, C. X.Dual-responsive cellulose fabric based on reversible acidichromic and photoisomeric polymeric dye contain-ing pendant azobenzene. Sens. Actuat. B Chem., 2018, 266, 195–203.
Lv, X. H.; Yan, H. Y.; Wang, Z. B.; Dong, J. R.; Liu, C.; Zhou, Y.; Chen, H. X.Effects of hydrogen bonding on photo-responsive behavior of healable azobenzene-containing polyurea elastomers. Opt. Mater., 2023, 139, 113755.
Alauddin, S. M.; Aripin, N. F. K.; Velayutham, T. S.; Chaganava, I.; Martinez-Felipe, A.The role of conductivity and molecular mobility on the photoanisotropic response of a new azo-polymer containing sulfonic groups. J. Photochem. Photobiol. A Chem., 2020, 389, 112268.
Zhao, P.; Deng, M.; Yang, Y.; Zhang, J.; Zhang, Y.Synthesis and self-assembly of thermoresponsive biohybrid graft copolymers based on a combination of passerini multicomponent reaction and molecular recognition. Macromol. Rapid Commun., 2021, 42(21), e2100424.
Ksendzov, E. A.; Nikishau, P. A.; Zurina, I. M.; Presniakova, V. S.; Timashev, P.; Rochev, Y. A.; Kotova, S.; Kostjuk, S. V.Graft copolymers of N-isopropylacrylamide with poly(D,L-lactide) or poly(ε-caprolactone) macromonomers: a promising class of thermoresponsive polymers with a tunable LCST. ACS Appl. Polym. Mater., 2022, 4(2), 1344–1357.
Zhang, Y. X.; Huang, J.; Zhang, J.; Ren, N.; Tong, G. S.; Zhu, X. Y.Dual photo/thermo-responsive polypeptoids. Chinese J. Polym. Sci., 2023, 41(1), 24–31.
曾兵华. 含侧链偶氮苯基团两亲性聚肽嵌段接枝共聚物的合成、表征及性能研究. 上海: 华东师范大学, 2014.
Grobelny, Z.; Golba, S.; Jurek-Suliga, J.Characterization of new polyether-diols with different molar masses and modality prepared by ring opening polymerization of oxiranes initiated with anhydrous potassium hydroxide. J. Polym. Res., 2019, 26(3), 75.
Shang, X. H.; Fan, X. S.; Yang, S. H.; Xie, Z. Z.; Guo, Y. M.; Hu, Z. G.Synthesis, characterization and self-assembly behavior of zwitterionic amphiphilic triblock copolymers bearing pendant amino acid residues. RSC Adv., 2015, 5(116), 96181–96188.
Wang, S.; Liu, W. Q.; Shi, H. Y.; Zhang, F. Y.; Liu, C. H.; Liang, L. Y.; Pi, K.An amino-terminated polyether-grafted graphene oxide for mechanical and thermal properties reinforcement of waterborne epoxy composites. J. Macromol. Sci. Part A, 2021, 58(7), 448–460.
Naserifar, S.; Kuijpers, P. F.; Wojno, S.; Kádár, R.; Bernin, D.; Hasani, M.In situ monitoring of cellulose etherification in solution: probing the impact of solvent composition on the synthesis of 3-allyloxy-2-hydroxypropyl-cellulose in aqueous hydroxide systems. Polym. Chem., 2022, 13(28), 4111–4123.
Gao, T. L.; Xia, X. C.; Tajima, K.; Yamamoto, T.; Isono, T.; Satoh, T.Polyether/polythioether synthesis via ring-opening polymerization of epoxides and episulfides catalyzed by alkali metal carboxylates. Macromolecules, 2022, 55(21), 9373–9383.
Zhou, Y. M.; Ming, S. J.; Tang, L. Y.; Qu, J. Q.Synthesis of UV-curable polyesters with lateral double bonds by ring-opening polymerization and their properties. J. Coat. Technol. Res., 2021, 18(6), 1591–1601.
Qian, Y. C.; Huang, X. J.; Xu, Z. K.Synthesis of polyphosphazene derivatives via thiol-ene click reactions in an aqueous medium. Macromol. Chem. Phys., 2015, 216(6), 671–677.
Tain, Y. L.; Jheng, L. C.; Chang, S. K. C.; Chen, Y. W.; Huang, L. T.; Liao, J. X.; Hou, C. Y.Synthesis and characterization of novel resveratrol butyrate esters that have the ability to prevent fat accumulation in a liver cell culture model. Molecules, 2020, 25(18), 4199.
Chen, M. Y.; Wang, X.; Yang, F. L.; Zhang, J.; Sun, J. Z.Azobenzene functionalized poly(diphenylacetylene): polymer synthesis and tunable fluorescent emission. J. Polym. Sci., 2023, 61(8), 659–670.
Xu, T. T.; Guo, S. F.; Li, M. M.; Zhang, Z.; Pang, B. B.; Hu, Y. M.Multiphotoinduced bending of azobenzene-modified graphene oxide/poly(vinyl alcohol) composite films for smart devices. ACS Appl. Nano Mater., 2021, 4(10), 10209–10217.
Racles, C.; Ursu, C.; Dascalu, M.; Asandulesa, M.; Tiron, V.; Bele, A.; Tugui, C.; Teodoroff-Onesim, S.Multi-stimuli responsive free-standing films of DR1- grafted silicones. Chem. Eng. J., 2020, 401, 126087.
Zhao, M.; Zhou, H. J.; Chen, L.; Hao, L.; Chen, H. Y.; Zhou, X. H.Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide. Carbohydr. Polym., 2020, 243, 116433.
Jing, X. K.; Wang, X. S.; Guo, D. M.; Zhang, Y.; Zhai, F. Y.; Wang, X. L.; Chen, L.; Wang, Y. Z.The high-temperature self-crosslinking contribution of azobenzene groups to the flame retardance and anti-dripping of copolyesters. J. Mater. Chem. A, 2013, 1(32), 9264–9272.
Liubimtsev, N.; Zagradska-Paromova, Z.; Appelhans, D.; Gaitzsch, J.; Voit, B.Photoresponsive double cross-linked supramolecular hydrogels based on A-cyclodextrin/azobenzene host-guest complex. Macromol. Chem. Phys., 2023, 224(3), 2200372.
Fang, W.; Feng, Y.; Gao, J.; Wang, H.; Ge, J.; Yang, Q.; Feng, W.Visible light-driven alkyne-grafted ethylene-bridged azobenzene chromophores for photothermal utilization. Molecules, 2022, 27(10), 3296.
Vulcano, R.; Pengo, P.; Velari, S.; Wouters, J.; De Vita, A.; Tecilla, P.; Bonifazi, D.Toward fractioning of isomers through binding-induced acceleration of azobenzene switching. J. Am. Chem. Soc., 2017, 139(50), 18271–18280.
0
浏览量
81
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构