浏览全部资源
扫码关注微信
1..中国科学院兰州化学物理研究所,材料磨损与防护重点实验室,兰州 730000
2..兰州理工大学石油化工学院,兰州 730050
*王齐华,E-mail: wangqh@licp.cas.cn;张耀明,E-mail: yaomingzhang@licp.cas.cn
*王齐华,E-mail: wangqh@licp.cas.cn;张耀明,E-mail: yaomingzhang@licp.cas.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-10,
收稿日期:2024-02-11,
录用日期:2024-04-01
移动端阅览
刘汉峰, 杨琳杰, 张建强, 王廷梅, 王齐华, 张耀明. 活性/可控自由基聚合在摩擦学中的应用和研究进展. 高分子通报, 2024, 37(9), 1172–1189
Liu, H. F.; Yang, L. J.; Zhang, J. Q.; Wang, T. M.; Wang, Q. H.; Zhang, Y. M. Applications and research progress of living/controlled free radical polymerization in tribology. Polym. Bull. (in Chinese), 2024, 37(9), 1172–1189
刘汉峰, 杨琳杰, 张建强, 王廷梅, 王齐华, 张耀明. 活性/可控自由基聚合在摩擦学中的应用和研究进展. 高分子通报, 2024, 37(9), 1172–1189 DOI: 10.14028/j.cnki.1003-3726.2024.24.039.
Liu, H. F.; Yang, L. J.; Zhang, J. Q.; Wang, T. M.; Wang, Q. H.; Zhang, Y. M. Applications and research progress of living/controlled free radical polymerization in tribology. Polym. Bull. (in Chinese), 2024, 37(9), 1172–1189 DOI: 10.14028/j.cnki.1003-3726.2024.24.039.
活性/可控自由基聚合(CRP)是一种灵活且可控的聚合技术,通过CRP可得到具有精确分子量、结构和性质的聚合物,其在材料科学和化学工程等领域中具有广泛的应用。本文以CRP为主要手段获得的聚合物在摩擦学领域的应用为出发点,综述了可控聚合表面改性的摩擦学研究,聚合物润滑添加剂的合成及它们对润滑油黏度和性能的改善。文中首先描述了聚合物刷的合成方法和在不同维度表面改性时的作用和优势,总结了其独特的润滑机理,并介绍了盐、pH、光等刺激响应型聚合物刷研究现状。其次,分析了CRP技术合成的具有三维结构的胶束、支化聚合物等聚合物润滑添加剂对润滑油黏度的改性和减摩抗磨性能的提升,并总结了它们作为润滑添加剂在润滑方面的优势和润滑机理。
Living/controlled free radical polymerization (CRP) stands out as a versatile and highly controllable polymerization technique
facilitating the precise tuning of molecular weights
structures
and properties of polymers throughout the polymerization process. This methodology finds extensive application across diverse domains such as materials science and chemical engineering. This review delves into the tribological implications of polymers primarily synthesized
via
CRP. It provides a comprehensive examination of tribology studies related to controlled polymerization surface modifications and the synthesis of polymer lubrication additives. It also discusses their subsequent effects on lubricant viscosity and performance enhancements. Firstly
the paper describes the synthesis method of polymer brus
hes and their roles and advantages in surface modification across various dimensions. It summarizes their unique lubrication mechanism and introduces the current research status on stimulus-responsive polymer brushes
including responses to salt
pH
and light. Secondly
we analyzed the modification of lubricant viscosity and the enhancement of friction reduction and anti-wear properties of polymeric lubricant additives with a three-dimensional structure
such as micelles and branched polymers synthesized by CRP technology. The advantages of using them as lubrication additives and their lubrication mechanisms are summarized.
活性/可控自由基聚合摩擦学表面改性聚合物刷聚合物润滑添加剂
Living/Controlled free radical polymerization (CRP)TribologySurface modificationPolymer brushPolymer lubrication additives
温诗铸, 黄平.摩擦学原理. 3版. 北京: 清华大学出版社, 2008.
Lin, B. J.; Zhu, H. T.; Tieu, A. K.; Hirayama, T.; Kosasih, B.; Novareza, O.Adsorbed film structure and tribological performance of aqueous copolymer lubricants with phosphate ester additive on Ti coated surface. Wear, 2015, 332-333, 1262–1272.
Lin, B. J.; Tieu, A. K.; Zhu, H. T.; Kosasih, B.; Novareza, O.; Triani, G.Tribological performance of aqueous copolymer lubricant in loaded contact with Si and coated Ti film. Wear, 2013, 302(1-2), 1010–1016.
Blom, A.; Drummond, C.; Wanless, E. J.; Richetti, P.; Warr, G. G.Surfactant boundary lubricant film modified by an amphiphilic diblock copolymer. Langmuir, 2005, 21(7), 2779–2788.
Borozenko, O.; Ou, C.; Skene, W. G.; Giasson, S.Polystyrene-block-poly(acrylic acid) brushes grafted from silica surfaces: pH- and salt-dependent switching studies. Polym. Chem., 2014, 5(7), 2242–2252.
张磊, 李文, 张阿方. 聚合物分子刷的合成与应用. 化学进展, 2006, 18(S2), 939–949.
Liu, G. Q.; Liu, Z. L.; Li, N.; Wang, X. L.; Zhou, F.; Liu, W. M.Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl. Mater. Interfaces, 2014, 6(22), 20452–20463.
Zhang, R.; Zhang, X. Z.; Xie, H. J.; Liu, S. J.; Ye, Q.; Zhou, F.Fabrication of zwitterionic polymer-functionalized onion-like carbon nanoparticles as aqueous lubricant additives. Langmuir, 2023, 39(43), 15391–15400.
Murdoch, T. J.; Pashkovski, E.; Patterson, R.; Carpick, R. W.; Lee, D.Sticky but slick: reducing friction using associative and nonassociative polymer lubricant additives. ACS Appl. Polym. Mater., 2020, 2(9), 4062–4070.
Espinosa-Marzal, R. M.; Drobek, T.; Balmer, T.; Heuberger, M. P.Hydrated-ion ordering in electrical double layers. Phys. Chem. Chem. Phys., 2012, 14(17), 6085–6093.
Klein, J.; Raviv, U.; Perkin, S.; Kampf, N.; Chai, L.; Giasson, S.Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films. J. Phys. Condens. Matter, 2004, 16(45), S5437–S5448.
Raviv, U.; Giasson, S.; Kampf, N.; Gohy, J. F.; Jérôme, R.; Klein, J.Lubrication by charged polymers. Nature, 2003, 425(6954), 163–165.
Lee, S.; Spencer, N. D.Adsorption properties of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) at a hydrophobic interface: influence of tribological stress, pH, salt concentration, and polymer molecular weight. Langmuir, 2008, 24(17), 9479–9488.
Lin, B. J.; Tieu, A. K.; Zhu, H. T.; Kosasih, B.; Novareza, O.Adsorption structure and adhesion strength of aqueous copolymer lubricant films on Si surface. Lubr. Sci., 2017, 29(8), 505–517.
Liang, F. C.; Chen, C. X.; Xue, H.; He, Q.; Cai, M. R.; Zhou, Y. F.; Zhang, B.; Zhou, F.; Bu, W. F.Toward high-performance lubricants: rational design and construction of supramolecular oil gels by amphiphilic telechelic polymers to stabilize two-dimensional nanomaterials in base oils. Tribol. Int., 2023, 184, 108468.
van Ravensteijn, B. G. P.; Bou Zerdan, R.; Seo, D.; Cadirov, N.; Watanabe, T.; Gerbec, J. A.; Hawker, C. J.; Israelachvili, J. N.; Helgeson, M. E.Triple function lubricant additives based on organic-inorganic hybrid star polymers: friction reduction, wear protection, and viscosity modification. ACS Appl. Mater. Interfaces, 2019, 11(1), 1363–1375.
Cao, W. H.; Ding, Q.; Ding, P.; Hu, L. T.; Liu, C. B.; Yu, W.Poly(N-isopropylacrylamide) microgel lubricants with high friction sensitivity. ACS Appl. Polym. Mater., 2022, 4(11), 8623–8632.
Lamontagne, H. R.; Lessard, B. H.Nitroxide-mediated polymerization: a versatile tool for the engineering of next generation materials. ACS Appl. Polym. Mater., 2020, 2(12), 5327–5344.
Wang, J. S.; Matyjaszewski, K.Controlled/“living” radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules, 1995, 28(23), 7901–7910.
Lorandi, F.; Fantin, M.; Matyjaszewski, K.Atom transfer radical polymerization: a mechanistic perspective. J. Am. Chem. Soc., 2022, 144(34), 15413–15430.
Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H.A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules, 1999, 32(6), 2071–2074.
Perrier, S.50th anniversary perspective: RAFT polymerization—a user guide. Macromolecules, 2017, 50(19), 7433–7447.
Zhou, C. C.; Wang, J.; Zhou, P.; Wang, G. W.A polymerization-induced self-assembly process for all-styrenic nano-objects using the living anionic polymerization mechanism. Polym. Chem., 2020, 11(15), 2635–2639.
Kitayama, Y.; Moribe, H.; Kishida, K.; Okubo, M.Emulsifier-free, organotellurium-mediated living radical emulsion polymerization (emulsion TERP) of methyl methacrylate with dimethyl ditelluride as the catalyst. Polym. Chem., 2012, 3(6), 1555.
Sarkar, J.; Xiao, L. Q.; Jackson, A. W.; van Herk, A. M.; Goto, A.Synthesis of transition-metal-free and sulfur-free nanoparticles and nanocapsules via reversible complexation mediated polymerization (RCMP) and polymerization induced self-assembly (PISA). Polym. Chem., 2018, 9(39), 4900–4907.
Veldscholte, L. B.; Snoeijer, J. H.; den Otter, W. K.; de Beer, S.Pressure anisotropy in polymer brushes and its effects on wetting. Langmuir, 2024, 40(8), 4401–4409.
Daniel, D.; Chia, A. Y. T.; Moh, L. C. H.; Liu, R. R.; Koh, X. Q.; Zhang, X.; Tomczak, N.Hydration lubrication of polyzwitterionic brushes leads to nearly friction- and adhesion-free droplet motion. Commun. Phys., 2019, 2, 105.
Lin, F. C.; Itoh, S.; Hirayama, T.; Hirooka, C.; Song, Y. X.; Fukuzawa, K.; Zhang, H. D.; Azuma, N.Hydration–lubrication performance improvement via synergistic effects of free polymers and polymer brushes. Tribol. Int., 2024, 191, 109189.
Ren, F. E.; Yang, S. Y.; Wu, Y.; Guo, F.; Zhou, F.Comparative study on macro-tribological properties of PLL-g-PEG and PSPMA polymer brushes. Polymers, 2022, 14(9), 1917.
Zhao, B.; Brittain, W. J.Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci., 2000, 25(5), 677–710.
Klein, J.Chemistry repair or replacement: a joint perspective. Science, 2009, 323(5910), 47–48.
Taunton, H. J.; Toprakcioglu, C.; Fetters, L. J.; Klein, J.Forces between surfaces bearing terminally anchored polymer chains in good solvents. Nature, 1988, 332, 712–714.
Raviv, U.; Laurat, P.; Klein, J.Fluidity of water confined to subnanometre films. Nature, 2001, 413(6851), 51–54.
Jagla, E. A.Boundary lubrication properties of materials with expansive freezing. Phys. Rev. Lett., 2002, 88(24), 245504.
Raviv, U.; Klein, J.Fluidity of bound hydration layers. Science, 2002, 297(5586), 1540–1543.
Klein, J.Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol., 2006, 220(8), 691–710.
Zdyrko, B.; Luzinov, I.Polymer brushes by the “grafting to” method. Macromol. Rapid Commun., 2011, 32(12), 859–869.
Drobek, T.; Spencer, N. D.Nanotribology of surface-grafted PEG layers in an aqueous environment. Langmuir, 2008, 24(4), 1484–1488.
Kenausis, G. L.; Vörös, J.; Elbert, D. L.; Huang, N. P.; Hofer, R.; Ruiz-Taylor, L.; Textor, M.; Hubbell, J. A.; Spencer, N. D.Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B, 2000, 104(14), 3298–3309.
Lee, S.; Müller, M.; Ratoi-Salagean, M.; Vörös, J.; Pasche, S.; De Paul, S. M.; Spikes, H. A.; Textor, M.; Spencer, N. D.Boundary lubrication of oxide surfaces by poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media. Tribol. Lett., 2003, 15, 231–239.
Ta, T. D.; Tieu, A. K.; Zhu, H. T.; Zhu, Q.; Kosasih, P. B.; Zhang, J.; Deng, G. Y.Tribological behavior of aqueous copolymer lubricant in mixed lubrication regime. ACS Appl. Mater. Interfaces, 2016, 8(8), 5641–5652.
Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H. A.Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev., 2009, 109(11), 5437–5527.
Jeong, W.; Kang, H.; Kim, E.; Jeong, J.; Hong, D.Surface-initiated ARGET ATRP of antifouling zwitterionic brushes using versatile and uniform initiator film. Langmuir, 2019, 35(41), 13268–13274.
Choi, J.; Schattling, P.; Jochum, F. D.; Pyun, J.; Char, K.; Theato, P.Functionalization and patterning of reactive polymer brushes based on surface reversible addition and fragmentation chain transfer polymerization. J. Polym. Sci. A Polym. Chem., 2012, 50(19), 4010–4018.
Feng, S. F.; Liu, Y. H.; Li, J. J.; Wen, S. Z.Superlubricity achieved with zwitterionic brushes in diverse conditions induced by shear actions. Macromolecules, 2021, 54(12), 5719–5727.
Chen, M.; Briscoe, W. H.; Armes, S. P.; Cohen, H.; Klein, J.Polyzwitterionic brushes: extreme lubrication by design. Eur. Polym. J., 2011, 47(4), 511–523.
Chen, M.; Briscoe, W. H.; Armes, S. P.; Klein, J.Lubrication at physiological pressures by poly-zwitterionic brushes. Science, 2009, 323(5922), 1698–1701.
Osaheni, A. O.; Ash-Shakoor, A.; Gitsov, I.; Mather, P. T.; Blum, M. M.Synthesis and characterization of zwitterionic polymer brush functionalized hydrogels with ionic responsive coefficient of friction. Langmuir, 2020, 36(14), 3932–3940.
Wei, Q. B.; Cai, M. R.; Zhou, F.; Liu, W. M.Dramatically tuning friction using responsive polyelectrolyte brushes. Macromolecules, 2013, 46(23), 9368–9379.
Yu, J.; Jackson, N. E.; Xu, X.; Morgenstern, Y.; Kaufman, Y.; Ruths, M.; de Pablo, J. J.; Tirrell, M.Multivalent counterions diminish the lubricity of polyelectrolyte brushes. Science, 2018, 360(6396), 1434–1438.
Uekusa, T.; Nagano, S.; Seki, T.Unique molecular orientation in a smectic liquid crystalline polymer film attained by surface-initiated graft polymerization. Langmuir, 2007, 23(8), 4642–4645.
Uekusa, T.; Nagano, S.; Seki, T.Highly ordered In-plane photoalignment attained by the brush architecture of liquid crystalline azobenzene polymer. Macromolecules, 2009, 42(1), 312–318.
Haque, H. A.; Nagano, S.; Seki, T.Lubricant effect of flexible chain in the photoinduced motions of surface-grafted liquid crystalline azobenzene polymer brush. Macromolecules, 2012, 45(15), 6095–6103.
Sun, T. L.; Wang, G. J.; Feng, L.; Liu, B. Q.; Ma, Y. M.; Jiang, L.; Zhu, D. B.Reversible switching between superhydrophilicity and superhydrophobicity. Angew. Chem. Int. Ed., 2004, 43(3), 357–360.
Mathis, C. H.; Divandari, M.; Simic, R.; Naik, V. V.; Benetti, E. M.; Isa, L.; Spencer, N. D.ATR-IR investigation of solvent interactions with surface-bound polymers. Langmuir, 2016, 32(30), 7588–7595.
Hao, Q. H.; Cheng, J.Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity. Chin. Phys. B, 2021, 30(6), 068201.
Padgurskas, J.; Rukuiza, R.; Prosyčevas, I.; Kreivaitis, R.Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol. Int., 2013, 60, 224–232.
Rapoport, L.; Fleischer, N.; Tenne, R.Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv. Mater., 2003, 15(7-8), 651–655.
Battez, A. H.; González, R.; Viesca, J. L.; Fernández, J. E.; Díaz Fernández, J. M.; Machado, A.; Chou, R.; Riba, J.CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 2008, 265(3-4), 422–428.
Sui, T. Y.; Song, B. Y.; Zhang, F.; Yang, Q. X.Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. J. Nanomater., 2015, 16(1), 427.
Gulzar, M.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Zulkifli, N. W. M.; Mufti, R. A.; Zahid, R.Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res., 2016, 18(8), 223.
Wright, R. A. E.; Wang, K. W.; Qu, J.; Zhao, B.Oil-soluble polymer brush grafted nanoparticles as effective lubricant additives for friction and wear reduction. Angew. Chem. Int. Ed., 2016, 55(30), 8656–8660.
Seymour, B. T.; Wright, R. A. E.; Parrott, A. C.; Gao, H. Y.; Martini, A.; Qu, J.; Dai, S.; Zhao, B.Poly(alkyl methacrylate) brush-grafted silica nanoparticles as oil lubricant additives: effects of alkyl pendant groups on oil dispersibility, stability, and lubrication property. ACS Appl. Mater. Interfaces, 2017, 9(29), 25038–25048.
Seymour, B. T.; Fu, W. X.; Wright, R. A. E.; Luo, H. M.; Qu, J.; Dai, S.; Zhao, B.Improved lubricating performance by combining oil-soluble hairy silica nanoparticles and an ionic liquid as an additive for a synthetic base oil. ACS Appl. Mater. Interfaces, 2018, 10(17), 15129–15139.
Liu, G. Q.; Cai, M. R.; Zhou, F.; Liu, W. M.Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. J. Phys. Chem. B, 2014, 118(18), 4920–4931.
Cosimbescu, L.; Robinson, J. W.; Zhou, Y.; Qu, J.Dual functional star polymers for lubricants. RSC Adv., 2016, 6(89), 86259–86268.
Sparnacci, K.; Frison, T.; Podda, E.; Antonioli, D.; Laus, M.; Notari, M.; Assanelli, G.; Atzeni, M.; Merlini, G.; Pó, R.Core-crosslinked star copolymers as viscosity index improvers for lubricants. ACS Appl. Polym. Mater., 2022, 4(12), 8722–8730.
Wang, J. L.; Ye, Z. B.; Zhu, S. P.Topology-engineered hyperbranched high-molecular-weight polyethylenes as lubricant viscosity-index improvers of high shear stability. Ind. Eng. Chem. Res., 2007, 46(4), 1174–1178.
Wyman, I.; Liu, G. J.Self-assembly and chemical processing of block copolymers: a roadmap towards a diverse array of block copolymer nanostructures. Sci. China Chem., 2013, 56(8), 1040–1066.
Blanazs, A.; Armes, S. P.; Ryan, A. J.Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun., 2009, 30(4-5), 267–277.
Ratcliffe, L. P. D.; McKenzie, B. E.; Le Bouëdec, G. M. D.; Williams, C. N.; Brown, S. L.; Armes, S. P.Polymerization-induced self-assembly of all-acrylic diblock copolymers via RAFT dispersion polymerization in alkanes. Macromolecules, 2015, 48(23), 8594–8607.
Warren, N. J.; Armes, S. P.Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc., 2014, 136(29), 10174–10185.
Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Y.Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev., 2020, 49(14), 4681–4736.
Derry, M.; Fielding, L.; Armes, S.Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci., 2016, 52, 1–18.
Pepić, I.; Lovrić, J.; Hafner, A.; Filipović-Grčić, J.Powder form and stability of Pluronic mixed micelle dispersions for drug delivery applications. Drug Dev. Ind. Pharm., 2014, 40(7), 944–951.
Luo, B. H.; Liang, H. G.; Zhang, S. W.; Qin, X. J.; Liu, X. H.; Liu, W.; Zeng, F. Q.; Wu, Y.; Yang, X. L.Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging. Int. J. Nanomed., 2015, 10, 5805–5817.
Yang, Y. H.; Ding, P. T.Study on the preparation of nifedipine-loaded oral copolymer micelles and its pharmacokinetics in rats. Cell Biochem. Biophys., 2015, 71(1), 155–160.
Zhang, P.; Zhang, H. Y.; He, W. X.; Zhao, D. J.; Song, A. X.; Luan, Y. X.Disulfide-linked amphiphilic polymer-docetaxel conjugates assembled redox-sensitive micelles for efficient antitumor drug delivery. Biomacromolecules, 2016, 17(5), 1621–1632.
Armes, S. P.; Perrier, S.; Zetterlund, P. B.Introduction to polymerisation-induced self assembly. Polym. Chem., 2021, 12(1), 8–11.
Charleux, B.; Delaittre, G.; Rieger, J.; D’Agosto, F.Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules, 2012, 45(17), 6753–6765.
Rymaruk, M. J.; O’Brien, C. T.; Brown, S. L.; Williams, C. N.; Armes, S. P.RAFT dispersion polymerization of benzyl methacrylate in silicone oil using a silicone-based methacrylic stabilizer provides convenient access to spheres, worms, and vesicles. Macromolecules, 2020, 53(5), 1785–1794.
Zhang, Q.; Zhu, S. P.Ionic liquids: versatile media for preparation of vesicles from polymerization-induced self-assembly. ACS Macro Lett., 2015, 4(7), 755–758.
Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P.Shear-induced alignment of block copolymer worms in mineral oil. Soft Matter, 2021, 17(39), 8867–8876.
Derry, M. J.; Fielding, L. A.; Armes, S. P.Industrially-relevant polymerization-induced self-assembly formulations in non-polar solvents: RAFT dispersion polymerization of benzyl methacrylate. Polym. Chem., 2015, 6(16), 3054–3062.
Canning, S. L.; Smith, G. N.; Armes, S. P.A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules, 2016, 49(6), 1985–2001.
Liu, C.; Hong, C. Y.; Pan, C. Y.Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem., 2020, 11(22), 3673–3689.
Derry, M. J.; Smith, T.; O’Hora, P. S.; Armes, S. P.Block copolymer nanoparticles prepared via polymerization-induced self-assembly provide excellent boundary lubrication performance for next-generation ultralow-viscosity automotive engine oils. ACS Appl. Mater. Interfaces, 2019, 11(36), 33364–33369.
Fielding, L. A.; Lane, J. A.; Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P.Thermo-responsive diblock copolymer worm gels in non-polar solvents. J. Am. Chem. Soc., 2014, 136(15), 5790–5798.
Zheng, R. H.; Liu, G. J.; Devlin, M.; Hux, K.; Jao, T. C.Friction reduction of lubricant base oil by micelles and crosslinked micelles of block copolymers. Tribol. Trans., 2009, 53(1), 97–107.
Ruan, H. W.; Shao, M. C.; Zhang, Y. M.; Wang, Q. H.; Wang, C.; Wang, T. M.Supramolecular oleogel-impregnated macroporous polyimide for high capacity of oil storage and recyclable smart lubrication. ACS Appl. Mater. Interfaces, 2022, 14(8), 10936–10946.
Shao, T.; Falcone, N.; Kraatz, H. B.Supramolecular peptide gels: influencing properties by metal ion coordination and their wide-ranging applications. ACS Omega, 2020, 5(3), 1312–1317.
Ooi, H. W.; Kocken, J. M. M.; Morgan, F. L. C.; Malheiro, A.; Zoetebier, B.; Karperien, M.; Wieringa, P. A.; Dijkstra, P. J.; Moroni, L.; Baker, M. B.Multivalency enables dynamic supramolecular host-guest hydrogel formation. Biomacromolecules, 2020, 21(6), 2208–2217.
Fu, W. X.; Bai, W.; Jiang, S. S.; Seymour, B. T.; Zhao, B.UCST-type thermoresponsive polymers in synthetic lubricating oil polyalphaolefin (PAO). Macromolecules, 2018, 51(5), 1674–1680.
王秀凤, 张莉, 刘鸣华. 超分子凝胶: 结构多样性与超分子手性. 物理化学学报, 2016, 32(1), 227–238.
Li, L. C.; Sun, R. Q.; Zheng, R. L.; Huang, Y.Anions-responsive supramolecular gels: a review. Mater. Des., 2021, 205, 109759.
Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J. T.; An, Z. S.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G.Star polymers. Chem. Rev., 2016, 116(12), 6743–6836.
高开元, 张爱波, 栾静繁. 超支化研究进展及应用. 材料科学与工程学报, 2010, 123(1), 152–155.
Ye, Z. B.; AlObaidi, F.; Zhu, S. P.Melt rheological properties of branched polyethylenes produced with Pd- and Ni-diimine catalysts. Macromol. Chem. Phys., 2004, 205(7), 897–906.
Goodwin, S. R.; Stimpson, A.; Moon, R.; Cowie, L.; Aragrag, N.; Filip, S. V.; Smith, A. G.; Irvine, D. J.Facile synthesis of functionalised hyperbranched polymers for application as novel, low viscosity lubricant formulation components. Polymers, 2022, 14(18), 3841.
Fréchet, J. M.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B.Self-condensing vinyl polymerization: an approach to dendritic materials. Science, 1995, 269(5227), 1080–1083.
Cai, W. B.; Yang, S. Q.; Zhang, L. Q.; Chen, Y.; Zhang, L.; Tan, J. B.Efficient synthesis and self-assembly of segmented hyperbranched block copolymers via RAFT-mediated dispersion polymerization using segmented hyperbranched macro-RAFT agents. Macromolecules, 2022, 55(13), 5775–5787.
Aydogan, C.; Yilmaz, G.; Yagci, Y.Synthesis of hyperbranched polymers by photoinduced metal-free ATRP. Macromolecules, 2017, 50(23), 9115–9120.
0
浏览量
79
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构