浏览全部资源
扫码关注微信
1..北京工商大学化学与材料工程学院,北京 100048
2..中国石油天然气股份有限公司石油化工研究院,北京 100195
*邢倩,E-mail: xingqian@btbu.edu.cn;李荣波,E-mail: lirongbo010@petrochina.com.cn
*邢倩,E-mail: xingqian@btbu.edu.cn;李荣波,E-mail: lirongbo010@petrochina.com.cn
纸质出版日期:2024-04-20,
收稿日期:2023-08-01,
录用日期:2023-10-07
扫 描 看 全 文
李昊晨, 张祥, 龙云瑞, 邢倩, 李荣波. 聚乳酸耐热改性的研究进展. 高分子通报, 2024, 37(4), 430–441
Li, H. C.; Zhang, X.; Long, Y. R.; Xing, Q.; Li, R. B. Research progress on heat resistant modification of polylactide. Polym. Bull. (in Chinese), 2024, 37(4), 430–441
李昊晨, 张祥, 龙云瑞, 邢倩, 李荣波. 聚乳酸耐热改性的研究进展. 高分子通报, 2024, 37(4), 430–441 DOI: 10.14028/j.cnki.1003-3726.2024.23.265.
Li, H. C.; Zhang, X.; Long, Y. R.; Xing, Q.; Li, R. B. Research progress on heat resistant modification of polylactide. Polym. Bull. (in Chinese), 2024, 37(4), 430–441 DOI: 10.14028/j.cnki.1003-3726.2024.23.265.
聚乳酸(PLA)是一种兼具良好生物相容性、力学以及加工性能的生物基可降解脂肪族聚酯,因此,在医药、食品包装等领域得到广泛应用。然而,PLA结晶速率慢、所得制品结晶度低、耐热性差,严重制约了其在高温环境下的使用。本文综述了国内外聚乳酸耐热改性方面的研究进展,重点阐述通过化学共聚、交联、共混以及外场作用(热处理、拉伸)等手段提高PLA耐热性的方法,并对耐热聚乳酸材料的发展前景进行了展望。
Polylactide (PLA) is a biodegradable polymer with excellent biocompatibility
mechanical properties
and processing properties
which has been widely used in fields such as medicine and food packaging. However
the slow crystallization rate
low crystallinity
and poor heat resistance of PLA seriously restrict its application in high-temperature environments. The research progress of heat-resistant modification of PLA at home and abroad is reviewed. The progress of improving the heat resistance of PLA by means of chemical copolymerization
crosslinking
blending and external field (heat treatment
stretching) is emphasized. The development prospect of heat-resistant polylactic acid materials is prospected.
聚乳酸耐热性结晶共混立构晶
PolylactideHeat resistanceCrystallizationBlendingStereocomplex
Sun, Y. F.; Zheng, Z. P.; Wang, Y. P.; Yang, B.; Wang, J. W.; Mu, W. L. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. J. Polym. Res., 2022, 29(10), 422.
Zhou, L.; Ke, K.; Yang, M. B.; Yang, W. Recent progress on chemical modification of cellulose for high mechanical-performance poly(lactic acid)/cellulose composite: a review. Compos. Commun.,2021, 23, 100548.
Rosli, N. A.; Karamanlioglu, M.; Kargarzadeh, H.; Ahmad, I. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: a review. Int. J. Biol. Macromol., 2021, 187, 732–741.
Yang, Y.; Zhang, L. S.; Xiong, Z.; Tang, Z. B.; Zhang, R. Y.; Zhu, J. Research progress in the heat resistance, toughening and filling modification of PLA. Sci. China Chem., 2016, 59(11), 1355–1368.
Nofar, M.; Salehiyan, R.; Sinha Ray, S. Rheology of poly- (lactic acid)-based systems. Polym. Rev.,2019, 59(3), 465–509.
Chakraborty, A.; Ghalsasi, P.; Radha, P. Insight into nano-fillers and their reinforcement onto polylactic acid. J. Inorg. Organomet. Polym. Mater.,2023, 33(5), 1119–1133.
Mulla, M. Z.; Rahman, M. R. T.; Marcos, B.; Tiwari, B.; Pathania, S. Polylactic acid (PLA) nanocomposites: effect of inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules, 2021, 26(7), 1967.
Castañeda-Rodríguez, S.; González-Torres, M.; Ribas-Aparicio, R. M.; Del Prado‑Audelo, M. L.; Leyva‑Gómez, G.; Gürer, E. S.; Sharifi‑Rad, J. Recent advances in modified poly(lactic acid) as tissue engineering materials. J. Biol. Eng., 2023, 17(1), 21.
Kost, B.; Basko, M.; Bednarek, M.; Socka, M.; Kopka, B.; Łapienis, G.; Biela, T.; Kubisa, P.; Brzeziński, M. The influence of the functional end groups on the properties of polylactide-based materials. Prog. Polym. Sci., 2022, 130, 101556.
Li, X. R.; Lin, Y.; Liu, M. L.; Meng, L. P.; Li, C. F. A review of research and application of polylactic acid composites. J. Appl. Polym. Sci., 2023, 140(7): 202.
Li, P.; Zhang, W.; Kong, M. Q.; Lv, Y. D.; Huang, Y. J.; Yang, Q.; Li, G. X. Ultrahigh performance polylactide achieved by the design of molecular structure. Mater. Des., 2021, 206, 109779.
Li, C. Y.; Gong, W. G.; Deng, Z. P.; Yao, Z. Y.; Meng, X.; Xin, Z. Fully biodegradable long-chain branched polylactic acid with high crystallization performance and heat resistance. Ind. Eng. Chem. Res., 2022, 61(30), 10945–10954.
Cui, L.; Wang, Y. H.; Zhang, R. D.; Liu, Y. Design high heat-resistant stereo complex poly(lactide acid) by cross-linking and plasticizing. Adv. Polym. Technol., 2018, 37(7), 2429–2435.
Liu, M. H.; Yin, Y.; Fan, Z. P.; Zheng, X. W.; Shen, S.; Deng, P. Y.; Zheng, C. B.; Teng, H.; Zhang, W. X. The effects of gamma-irradiation on the structure, thermal resistance and mechanical properties of the PLA/EVOH blends. Nucl. Instrum. Methods Phys. Res. Sect. B, 2012, 274, 139–144.
da Silva Barbosa Ferreira, E.; Luna, C. B. B.; dos Santos Filho, E. A.; Wellen, R. M. R.; Araújo, E. M. Use of crosslinking agent to produce high-performance PLA/EVA blends via reactive processing. J. Vinyl Addit. Technol., 2023, 29(1), 161–175.
曹宏伟, 杨荣, 李锦春. 过氧化二异丙苯硫化制备增强耐热聚乳酸. 高分子材料科学与工程, 2021, 37(7), 58–65.
Kaczor, D.; Fiedurek, K.; Bajer, K.; Raszkowska-Kaczor, A.; Domek, G.; Macko, M.; Madajski, P.; Szroeder, P. Impact of the graphite fillers on the thermal processing of graphite/poly(lactic acid) composites. Materials, 2021, 14(18), 5346.
Pan, H. W.; Kong, J. J.; Chen, Y. J.; Zhang, H. L.; Dong, L. S. Improved heat resistance properties of poly(L-lactide)/basalt fiber biocomposites with high crystallinity under forming hybrid-crystalline morphology. Int. J. Biol. Macromol., 2019, 122, 848–856.
Barczewski, M.; Mysiukiewicz, O.; Matykiewicz, D.; Skórczewska, K.; Lewandowski, K.; Andrzejewski, J.; Piasecki, A. Development of polylactide composites with improved thermomechanical properties by simultaneous use of basalt powder and a nucleating agent. Polym. Compos., 2020, 41(7), 2947–2957.
Jo, M. Y.; Ryu, Y. J.; Ko, J. H.; Yoon, J. S. Hydrolysis and thermal degradation of poly(L-lactide) in the presence of talc and modified talc. J. Appl. Polym. Sci., 2013, 129(3), 1019–1025.
Kim, M. W.; Song, Y. S.; Youn, J. R. Effects of interfacial adhesion and crystallization on the thermoresistance of poly(lactic acid)/mica composites. Compos. A, 2010, 41(12), 1817–1822.
Gigante, V.; Aliotta, L.; Canesi, I.; Sandroni, M.; Lazzeri, A.; Coltelli, M. B.; Cinelli, P. Improvement of interfacial adhesion and thermomechanical properties of PLA based composites with wheat/rice bran. Polymers, 2022, 14(16), 3389.
Yang, J. N.; Wang, C.; Shao, K. Y.; Ding, G. X.; Tao, Y. L.; Zhu, J. B. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated Barium sulfate. Russ. J. Phys. Chem. A, 2015, 89(11), 2092–2096.
Kowalewska, A.; Nowacka, M. Supramolecular interactions in hybrid polylactide blends—the structures, mechanisms and properties. Molecules, 2020, 25(15), 3351.
Xu, X. K.; Zhen, W. J.; Bian, S. Z. Structure, performance and crystallization behavior of poly(lactic acid)/humic acid amide composites. Polym. Plast. Technol. Eng., 2018, 57(18), 1858–1872.
Zhang, X.; Yang, B. A.; Fan, B. M.; Sun, H.; Zhang, H. J. Enhanced nonisothermal crystallization and heat resistance of poly(L-lactic acid) by D-sorbitol as a homogeneous nucleating agent. ACS Macro Lett., 2021, 10(1), 154–160.
Wang, L.; Wang, Y. N.; Huang, Z. G.; Weng, Y. X. Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater. Des.2015, 66, 7–15.
Barczewski, M.; Mysiukiewicz, O.; Matykiewicz, D.; Kloziński, A.; Andrzejewski, J.; Piasecki, A. Synergistic effect of different basalt fillers and annealing on the structure and properties of polylactide composites. Polym. Test., 2020, 89, 106628.
Liu, Y. L.; Wang, R.; Zhang, X. Q.; Zhang, J.; Dong, Z. F.; Cui, T. Y.; Wang, S. L.; Wei, J. F. Simultaneously enhancing the fire retardancy and heat resistance of stereo-complex-type polylactic acid. ACS Omega, 2022, 7(26), 22149–22160.
Gao, J. C.; Wu, Y. D.; Li, J.; Peng, X. Q.; Yin, D. W.; Wang, J. C.; Wang, X. H.; Jin, M. J.; Yao, Z. W.; Shen, X. J.; Wang, S.; Jin, H. L. Toughening and heat-resistant modification of degradable PLA/PBS-based composites by using glass fiber/silicon dioxide hybrid fillers. Polymers, 2022, 14(16), 3237.
Zhu, Q. J.; Chang, K. X.; Qi, L. Y.; Li, X. Y.; Gao, W. M.; Gao, Q. W. Surface modification of poly(L-lactic acid) through stereo complexation with enantiomeric poly(D-lactic acid) and its copolymer. Polymers, 2021, 13(11), 1757.
Malayarom, P.; Somboonphong, N.; Pattamaprom, C. Simultaneous improvement of impact strength and thermal resistance of PLA/PDLA stereo complex with core-shell rubber blends. Int. J. Polym. Anal. Charact., 2021, 26(3), 277–289.
Zhao, C. X.; Yu, M. M.; Fan, Q. C.; Zou, G. X.; Li, J. C. The role of cold crystallization of homochiral crystallites in the superb heat resistant poly(lactic acid). Polym. Adv. Technol., 2020, 31(5), 1077–1087.
Wu, B. G.; Yang, W. J.; Niu, D. Y.; Dong, W. F.; Chen, M. Q.; Liu, T. X.; Du, M. L.; Ma, P. M. Stereo complexed poly(lactide) composites toward engineering plastics with superior toughness, heat resistance and anti-hydrolysis. Chinese J. Polym. Sci., 2020, 38(10), 1107–1116.
Deng, S. H.; Bai, H. W.; Liu, Z. W.; Zhang, Q.; Fu, Q. A. Toward supertough and heat-resistant stereo complex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending. Macromolecules, 2019, 52(4), 1718–1730.
Magazzini, L.; Grilli, S.; Fenni, S. E.; Donetti, A.; Cavallo, D.; Monticelli, O. The blending of poly(glycolic acid) with polycaprolactone and poly(L-lactide): promising combinations. Polymers,2021, 13(16), 2780.
Fryń, P.; Bogdanowicz, K. A.; Krysiak, P.; Marzec, M.; Iwan, A.; Januszko, A. Dielectric, thermal and mechanical properties of L, D-poly(lactic acid) modified by 4’-pentyl-4-biphenylcarbonitrile and single walled carbon nanotube. Polymers,2019, 11(11), 1867.
Bajwa, D. S.; Shojaeiarani, J.; Liaw, J. D.; Bajwa, S. G. Role of hybrid nano-zinc oxide and cellulose nanocrystals on the mechanical, thermal, and flammability properties of poly(lactic acid) polymer. J. Compos. Sci.,2021, 5(2), 43.
Andrzejewski, J.; Nowakowski, M. Development of toughened flax fiber reinforced composites.modification of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends by reactive extrusion process. Materials, 2021, 14(6), 1523.
Hashima, K.; Nishitsuji, S.; Inoue, T. Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer, 2010, 51(17), 3934–3939.
Prasong, W.; Ishigami, A.; Thumsorn, S.; Kurose, T.; Ito, H. Improvement of interlayer adhesion and heat resistance of biodegradable ternary blend composite 3D printing. Polymers, 2021, 13(5), 740.
Wang, Y.; Chiao, S. M.; Hung, T. F.; Yang, S. Y. Improvement in toughness and heat resistance of poly-(lactic acid)/polycarbonate blend through twin-screw blending: influence of compatibilizer type. J. Appl. Polym. Sci., 2012, 125(S2): 402–412.
Deng, L. A.; Xu, C.; Ding, S. S.; Fang, H. G.; Wang, X. H.; Wang, Z. G. Processing a supertoughened polylactide ternary blend with high heat deflection temperature by melt blending with a high screw rotation speed. Ind. Eng. Chem. Res., 2019, 58(24), 10618–10628.
Ma, B. M.; Wang, X. L.; He, Y.; Dong, Z.; Zhang, X.; Chen, X.; Liu, T. X. Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. Polymer, 2021, 212, 123280.
Li, G. L.; Yang, B. J.; Han, W. J.; Li, H. M.; Kang, Z.; Lin, J. Tailoring the thermal and mechanical properties of injection-molded poly(lactic acid) parts through annealing. J. Appl. Polym. Sci., 2021, 138(2), e49648.
Lin, H.; Chen, Y. A.; Gao, X. R.; Xu, L.; Lei, J.; Zhong, G. J.; Li, Z. M. Transparent, heat-resistant, ductile, and self-reinforced polylactide through simultaneous formation of nanocrystals and an oriented amorphous phase. Macromolecules, 2023, 56(6), 2454–2464.
朱凡. 聚乳酸纤维的晶体结构调控与耐热改性. 杭州: 浙江理工大学, 2019.
Shen, T. F.; Xu, Y. S.; Ma, P. M.; Wang, L. K.; Dong, W. F.; Chen, M. Q. High-performance poly(lactide) composites by construction of network-like shish-kebab crystals. RSC Adv., 2016, 6(75), 71046–71051.
Li, R. G.; Zhao, X. W.; Coates, P.; Caton-Rose, F.; Ye, L. Highly reinforced poly(lactic acid) foam fabricated by formation of a heat-resistant oriented stereocomplex crystalline structure. ACS Sustain. Chem. Eng., 2021, 9(37), 12674–12686.
0
浏览量
141
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构