浏览全部资源
扫码关注微信
宁波大学材料科学与化学工程学院,宁波 315211
*龚狄荣,E-mail: gongdirong@nbu.edu.cn
纸质出版日期:2024-04-20,
收稿日期:2023-08-21,
录用日期:2023-09-21
扫 描 看 全 文
葛佳佳, 龚狄荣. 铁催化剂催化1,3-二烯烃聚合的研究进展. 高分子通报, 2024, 37(4), 442–457
Ge, J. J.; Gong, D. R. Advances in iron-catalyzed polymerization of 1,3-diolefins. Polym. Bull. (in Chinese), 2024, 37(4), 442–457
葛佳佳, 龚狄荣. 铁催化剂催化1,3-二烯烃聚合的研究进展. 高分子通报, 2024, 37(4), 442–457 DOI: 10.14028/j.cnki.1003-3726.2024.23.291.
Ge, J. J.; Gong, D. R. Advances in iron-catalyzed polymerization of 1,3-diolefins. Polym. Bull. (in Chinese), 2024, 37(4), 442–457 DOI: 10.14028/j.cnki.1003-3726.2024.23.291.
天然橡胶的有限供应和对橡胶的高需求促进了合成橡胶的发展。金属催化的配位聚合是当今合成高规整性橡胶材料的主要途径,过渡金属铁催化剂因含量丰富、低价格、低毒性、高活性和高选择性在合成橡胶制备领域受广泛关注。本文总结了Ziegler-Natta三元铁催化剂、
N
N
-双齿配位、
N
N
N
-三齿配体配位的铁催化剂在催化1
3-二烯单体聚合中的研究进展,阐述了聚合活性、选择性、聚合物分子量及其分子量分布等催化性能与催化剂组成、结构和聚合条件等因素的关系,为高性能1
3-二烯聚合铁催化剂的设计与合成提供借鉴与思路。
The limited supply of natural rubber and the high demand for rubber have promoted the development of synthetic rubber. Metal-catalyzed coordination polymerisation is the main route for the synthesis of highly regular rubber materials today. Transition metal iron catalysts are of great importance in the preparation of synthetic rubbers due to their abundance
low price
low toxicity
high activity and high selectivity. This work summarizes the recent progress of Ziegler-Natta ternary iron catalysts
N
N
-bidentate ligand and
N
N
N
-tridentate ligand supported iron catalysts in 1
3-diene monomer polymerization. The relationship between catalytic performance such as polymerization activity
selectivity
polymer molecular weight and its molecular weight distribution
and other factors such as catalyst composition
structure and polymerization conditions are illustrated. This review could provide references and ideas for the design and synthesis of high-performance 1
3-diene polymerization iron catalysts.
铁催化剂二烯烃配位聚合选择性
Iron catalyst13-DieneCoordination polymerizationSelectivity
Thiele, S. K. H.; Wilson, D. R. Alternate transition metal complex based diene polymerization. J. Macromol. Sci. C, 2003, 43(4), 581–628.
Porri, L.; Giarrusso, A.; Ricci, G. Recent views on the mechanism of diolefin polymerization with transition metal initiator systems. Prog. Polym. Sci., 1991, 16(2-3), 405–441.
Ouardad, S.; Deffieux, A.; Peruch, F. Polyisoprene synthesized via cationic polymerization: state of the art. Pure Appl. Chem., 2012, 84(10), 2065–2080.
Wang, B. L.; Cui, D. M.; Lv, K. Highly 3,4-selective living polymerization of isoprene with rare earth metal fluorenyl N-heterocyclic carbene precursors. Macromolecules, 2008, 41(6), 1983–1988.
Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Polymerization of ethylene and other olefins. Angew. Chem., 1955, 67(16), 426.
Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. Crystalline high polymers of α-olefins. J. Am. Chem. Soc., 1955, 77(6), 1708–1710.
Watson, P. L. Ziegler-Natta polymerization: the lanthanide model. J. Am. Chem. Soc., 1982, 104(1), 337–339.
Eisch, J. J. Fifty years of Ziegler-Natta polymerization: from serendipity to science. A personal account. Orga-nometallics, 2012, 31(14), 4917–4932.
Shamiri, A.; Chakrabarti, M. H.; Jahan, S.; Hussain, M. A.; Kaminsky, W.; Aravind, P. V.; Yehye, W. A. The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials, 2014, 7(7), 5069–5108.
Huang, J.; Rempel, G. L. Ziegler-Natta catalysts for olefin polymerization: mechanistic insights from metallocene systems. Prog. Polym. Sci., 1995, 20(3), 459–526.
Egorova, K. S.; Ananikov, V. P. Toxicity of metal compounds: knowledge and myths. Organometallics, 2017, 36(21), 4071–4090.
Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. Well-defined transition metal complexes with phosphorus and nitrogen ligands for 1,3-dienes polymerization. Coord. Chem. Rev.,2010, 254(5-6), 661–676.
Champouret, Y.; Hashmi, O. H.; Visseaux, M. Discrete iron-based complexes: applications in homogeneous coordination-insertion polymerization catalysis. Coord. Chem. Rev., 2019, 390, 127–170.
Ricci, G.; Pampaloni, G.; Sommazzi, A.; Masi, F. Dienes polymerization: where we are and what lies ahead. Macromolecules, 2021, 54(13), 5879–5914.
Tobisch, S. Mechanism of the chain termination of the allylnickel(II)-catalyzed polymerization of 1,3-butadiene. A density functional investigation for the cationic [NiII(RC3H4)(cis-C4H6)L]+ active catalyst. Mac-romolecules, 2003, 36(16), 6235–6244.
Noguchi, H.; Kambara, S. New catalyst systems for the polymerization of conjugated dienes. J. Polym. Sci. B Polym. Lett., 1964, 2(6), 593–596.
Swift, H. E.; Bozik, J. E.; Wu, C. Y. Specific catalysis with iron coordination complexes. J. Catal.,1970, 17(3), 331–340.
Zhang, Z. Y.; Zhang, H. J.; Ma, H. M.; Wu, Y. A novel iron catalyst for the polymerization of butadiene. J. Mol. Catal., 1982, 17(1), 65–76.
Hsu, W. L.; Halasa, A. F. Preparation and charac-terization of crystalline 3,4-polyisoprene. Rubber Chem. Technol., 1994, 67(5), 865–870.
Zhang, Z. Y.; Zhou, Z. N.; Ma, H. M. 13C-NMR study on the equibinary (cis-1,4; 1,2) polybutadiene polymerized with iron catalyst. Chinese J. Polym. Sci.,1983, (1), 92–100.
姜连升, 张学全, 毕吉福, 王蓓, 张永清, 胡雁鸣. 间同1,2-聚丁二烯的制造方法. 中国, CN1554682A, 2006-06-21.
Lu, J.; Hu, Y. M.; Zhang, X. Q.; Bi, J. F.; Dong, W. M.; Jiang, L. S.; Huang, B. T. Fe(2-EHA)3/Al(i-Bu)3/hydrogen phosphite catalyst for preparing syndiotactic 1,2-polybutadiene. J. Appl. Polym. Sci., 2006, 100(5), 4265–4269.
毕吉福, 张学全, 姜连升, 董为民, 王蓓, 张永清. 分散介质是水的间同1,2-聚丁二烯聚合体系及聚合方法. 中国, CN1814635A. 2009-03-04.
毕吉福, 张学全, 姜连升, 蔡洪光, 王蓓. 热稳定间同1,2-聚丁二烯热塑性弹性体的制造方法. 中国, CN101434672A, 2011-05-04.
Gong, D. R.; Dong, W. M.; Hu, J. C.; Zhang, X. Q.; Jiang, L. S. Living polymerization of 1,3-butadiene by a Ziegler-Natta type catalyst composed of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite. Polymer, 2009, 50(13), 2826–2829.
Gong, D. R.; Dong, W. M.; Hu, Y. M.; Bi, J. F.; Zhang, X. Q.; Jiang, L. S. Syndiotactically enriched 1,2-selective polymerization of 1,3-butadiene initiated by iron catalysts based on a new class of donors. Polymer, 2009, 50(25), 5980–5986.
Pan, W. J.; Chen, H. F.; Mu, J. S.; Li, W.; Jiang, F.; Weng, G. S.; Hu, Y. M.; Gong, D. R.; Zhang, X. Q. Synthesis of high crystalline syndiotactic 1,2-polybutadienes and study on their reinforcing effect on cis-1,4 polybutadiene. Polymer, 2017, 111, 20–26.
胡雁鸣, 董为民, 姜连升, 张学全. 乙酰丙酮铁/改进甲基铝氧烷/二乙基亚磷酸酯催化剂作用下的异戊二烯聚合. 全国高分子学术论文报告会, 2003.
Luo, S. Process and iron-based catalyst composition for the production of syndiotactic 1,2-polybutadiene.United States patent, US20010036899, 2001-11-01.
Yan, H. M.; Zhang, X. Q.; Fu, J. B.; Dong, W. M.; Jiang, L. S.; Wang, F. S. Development of catalyst systems for synthesizing diene rubbers with vinyl structure.Symposium of International Rubber Conference 2004 vol. A,2004.
胡尊燕, 陈双喜, 王瑛, 王玉强, 武守鹏, 刘海燕, 王胜伟. 间同1,2-聚丁二烯的制备方法. 中国, CN 104530283A, 2015-04-22.
Zheng, W. J.; Wang, F.; Bi, J. F.; Zhang, H. X.; Zhang, C. Y.; Hu, Y. M.; Bai, C. X.; Zhang, X. Q. Synthesis and characterization of soft-hard stereoblock polybutadiene with Fe(2-EHA)3/Al(i-Bu)3/DEP catalyst system. J. Polym. Sci. A, 2015, 53(10), 1182–1188.
Pan, W. J.; Chen, H. F.; Sun, R.; Gong, D. R.; Jia, X. Y.; Hu, Y. M.; Zhang, X. Q. Highly 1,2 regio- and stereoselective polymerization of 1,3-butadiene initiated by iron catalysts with pyridinyl phosphate. Ind. Eng. Chem. Res., 2016, 55(28), 7580–7586.
Gong, D. R.; Pan, W. J.; Zhu, T. T.; Chen, H. F.; Zhou, Z. Z.; Jiang, F.; Hu, Y. M.; Zhang, X. Q. Polymerization of 1,3-butadiene catalyzed by a thermal robust, high selective and active iron catalyst: an applicable recipe for producing syndiotactic 1,2-polybutadiene. Polymer, 2016, 98, 136–142.
Liang, S. S.; Zhang, H. Q.; Cong, R. X.; Liu, H.; Wang, F.; Hu, Y. M.; Zhang, X. Q. In-chain functionalized syndiotactic 1,2-polybutadiene by a Ziegler-Natta iron(Ⅲ) catalytic system. RSC Adv., 2019, 9(57), 33465–33471.
Hu, Z. H.; Xu, Y. C.; Hu, W. H.; Luo, W. W.; Zhao, Y.; Huang, W. Z.; Gong, D. R. Synthesis and properties of syndiotactic 1,2-polybutadiene catalyzed by iron catalyst with phosphate as additive. J. Appl. Polym. Sci., 2021, 138, e49686.
Hu, W. H.; Xu, Y. C.; Ying, W. L.; Hu, Z. H.; Luo, W. W.; Tang, F. M.; Huang, W. Z.; Jia, X. Y.; Gong, D. R. 1,2-Syndiotactic polymerization of butadiene catalyzed by iron(III) acetylacetonate in combination with exogenous phosphate. Mol. Catal., 2020, 497, 111219.
Chen, Z. Y.; Xu, X. Q.; Zhou, Y.; Liu, H. J.; Cui, S.; Gong, D. R. Fe-based catalyst with diphenylphosphite as donor for stereopolymerization of butadiene, isoprene, and myrcene. J. Appl. Polym. Sci.,2022, 139(45), e53127.
Ricci, G. Polymerization of 1,3-dienes with iron complexes based catalysts: influence of the ligand on catalyst activity and stereospecificity. J. Mol. Catal. A, 2003, 204-205, 287–293.
Bazzini, C.; Giarrusso, A.; Porri, L. Diethylbis(2, 2’-bipyridine)iron/MAO. A very active and stereospecific catalyst for 1,3-diene polymerization. Macromol. Rapid Commun., 2002, 23(15), 922–927.
Bazzini, C.; Giarrusso, A.; Porri, L.; Pirozzi, B.; Napo-litano, R. Synthesis and characterization of syndiotactic 3,4-polyisoprene prepared with diethylbis(2,2’-bipyridine)iron-MAO. Polymer, 2004, 45(9), 2871–2875.
Ricci, G.; Bertini, F.; Boccia, A. C.; Zetta, L.; Alberti, E.; Pirozzi, B.; Giarrusso, A.; Porri, L. Synthesis and characterization of syndiotactic 1,2-poly(3-methyl-1,3-pentadiene). Macromolecules, 2007, 40(20), 7238–7243.
Pirozzi, B.; Napolitano, R.; Giusto, G.; Esposito, S.; Ricci, G. Determination of the crystal structure of syn-diotactic 1,2-poly(E-3-methyl-1,3-pentadiene) by X-ray diffraction and molecular mechanics. Macromolecules, 2007, 40(25), 8962–8968.
Luo, L.; Kang, X. H.; Zhou, G. L.; Chen, S.; Luo, G.; Qu, J. P.; Luo, Y. Mechanistic insights into regioselective polymerization of 1,3-dienes catalyzed by a bipyridine-ligated iron complex: a DFT study. Int. J. Quantum Chem., 2016, 116(17), 1274–1280.
Ricci, G.; Leone, G.; Boccia, A. C.; Pierro, I.; Zanchin, G.; Mauri, M.; Scoti, M.; Malafronte, A.; Auriemma, F.; De Rosa, C. Perfectly alternating ethylene/2-butene copolymers by hydrogenation of highly stereoregular 1,4-poly(1,3-diene)s: synthesis and characterization. Macromolecules, 2017, 50(3), 754–761.
Raynaud, J.; Wu, J. Y.; Ritter, T. Iron-catalyzed poly-merization of isoprene and other 1,3-dienes. Angew. Chem., 2012, 124(47), 11975–11978.
Liu, H.; Wang, F.; Jia, X. Y.; Liu, L.; Bi, J. F.; Zhang, C. Y.; Zhao, L. P.; Bai, C. X.; Hu, Y. M.; Zhang, X. Q. Synthesis, characterization, and 1,3-butadiene polymerization studies of Co(II), Ni(II), and Fe(II) complexes bearing 2-(N-arylcarboximidoylchloride) quinoline ligand. J. Mol. Catal. A, 2014, 391, 25–35.
Guo, L. H.; Jing, X. Y.; Xiong, S. Y.; Liu, W. J.; Liu, Y. L.; Liu, Z.; Chen, C. L. Influences of alkyl and aryl substituents on iminopyridine Fe(II)- and Co(II)-catalyzed isoprene polymerization. Polymers,2016, 8(11), 389.
Zhu, G. Q.; Zhang, X. H.; Zhao, M. M.; Wang, L. A.; Jing, C. Y.; Wang, P.; Wang, X. W.; Wang, Q. G. Influences of fluorine substituents on iminopyridine Fe(II)- and Co(II)-catalyzed isoprene polymerization. Polymers, 2018, 10(9), 934.
Zhao, M. M.; Wang, L. A.; Mahmood, Q.; Jing, C. Y.; Zhu, G. Q.; Zhang, X. H.; Wang, X. W.; Wang, Q. G. Controlled isoprene polymerization mediated by iminopyridine-iron(II) acetylacetonate pre-catalysts. Appl. Organomet. Chem., 2019, 33(4), e4836.
Jing, C. Y.; Wang, L.; Mahmood, Q.; Zhao, M. M.; Zhu, G. Q.; Zhang, X. H.; Wang, X. W.; Wang, Q. G. Synthesis and characterization of aminopyridine iron(ii) chloride catalysts for isoprene polymerization: sterically controlled monomer enchainment. Dalton Trans.,2019, 48(22), 7862–7874.
Jing, C. Y.; Wang, L. A.; Zhu, G. Q.; Hou, H. B.; Zhou, L.; Wang, Q. G. Enhancing thermal stability in aminopyridine iron(II)-catalyzed polymerization of conjugated dienes. Organometallics, 2020, 39(22), 4019–4026.
Ricci, G.; Leone, G.; Zanchin, G.; Palucci, B.; Boccia, A. C.; Sommazzi, A.; Masi, F.; Zacchini, S.; Guelfi, M.; Pampaloni, G. Highly stereoregular 1,3-butadiene and isoprene polymers through monoalkyl-N-aryl-substituted iminopyridine iron complex-based catalysts: synthesis and characterization. Macromolecules, 2021, 54(21), 9947–9959.
Scoti, M.; De Stefano, F.; Zanchin, G.; Leone, G.; De Rosa, C.; Ricci, G. Synthesis, structure, and properties of poly(isoprene)s of different constitutions and confi-gurations from catalysts based on complexes of Nd, Co, and Fe. Macromolecules, 2023, 56(12), 4629–4638.
Zhu, G. Q.; Wang, L.; Mahmood, Q.; Zhou, L.; Wang, Q. G. Ligand-regulated polymerization of conjugated dienes catalyzed by confined iminopyridine iron complexes with high activity and thermal stability. Polym. Test., 2021, 102, 107317.
Zhao, M. M.; Ma, Y.; Zhang, X. H.; Wang, L. A.; Zhu, G. Q.; Wang, Q. G. Synthesis, characterization and catalytic property studies for isoprene polymerization of iron complexes bearing unionized pyridine-oxime ligands. Polymers, 2022, 14(17), 3612.
Zhao, M. M.; Zhang, X. H.; Wang, L. D.; Wang, L. A.; Zhu, G. Q.; Wang, Q. G. Pyridine-oxazoline ligated iron complexes: synthesis, characterization, and catalytic activity for isoprene polymerization. Appl. Organomet. Chem., 2022, 36(10), e6848.
Guo, J. W.; Zhang, S. B.; Ren, J. T.; Li, H.; Wang, S. W.; Hu, Y. M.; Zhou, G. Y. Highly active and thermally robust pyridylbenzotriazole iron-based catalysts for preparation of polyisoprenes that feature high wet traction and low rolling resistance. Mol. Catal.,2023, 549, 113481.
Nakayama, Y.; Baba, Y. J.; Yasuda, H.; Kawakita, K.; Ueyama, N. Stereospecific polymerizations of conjugated dienes by single site iron complexes having chelating N,N,N-donor ligands. Macromolecules,2003, 36(21), 7953–7958.
Tobisch, S. Mechanistic insight into the selective trans-1,4-polymerization of butadiene by terpyridine–iron(II) complexes—a computational study. Can. J. Chem., 2009, 87(10), 1392–1405.
Gong, D. R.; Wang, B. L.; Bai, C. X.; Bi, J. F.; Wang, F.; Dong, W. M.; Zhang, X. Q.; Jiang, L. S. Metal dependent control of cis-/trans-1,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine. Polymer, 2009, 50(26), 6259–6264.
Tobisch, S.; Taube, R. Mechanistic studies of the 1,4-polymerization of butadiene according to the π-allyl-insertion mechanism. 3. Density functional study of the C―C bond formation reaction in cationic “ligand-free” (η3:η2-heptadienyl)(η2-/η4-butadiene)nickel(II) complexes [Ni(C7H11)(C4H6)]+. Organometallics,1999, 18(25), 5204–5218.
Tobisch, S.; Taube, R. Reaction mechanism and structure-reactivity relationships in the stereospecific 1,4-polymerization of butadiene catalyzed by neutral dimeric allylnickel(II) halides [Ni(C3H5)X]2 (X–=Cl–, Br–, I–): a comprehensive density functional theory study. Chem. Eur. J., 2001, 7(17), 3681–3695.
Tobisch, S. Theoretical investigation of the mechanism of cis-trans regulation for the allylnickel(II)-catalyzed 1,4 polymerization of butadiene. Acc. Chem. Res.,2002, 35(2), 96–104.
Tobisch, S. The nature of the monomer insertion step in the allylnickel(II)-catalyzed 1,4-polymerization of 1,3-butadiene: σ-allyl-insertion mechanism versus π-allyl-insertion mechanism. Chem. Eur. J.,2002, 8(20), 4756–4766.
O'Connor, A. R.; White, P. S.; Brookhart, M. The mechanism of polymerization of butadiene by “ligand-free” nickel(II) complexes. J. Am. Chem. Soc., 2007, 129(14), 4142–4143.
Gong, D. R.; Jia, X. Y.; Wang, B. L.; Wang, F.; Zhang, C. Y.; Zhang, X. Q.; Jiang, L. S.; Dong, W. M. Highly trans-1,4 selective polymerization of 1,3-butadiene initiated by iron(III) bis(imino)pyridyl complexes. Inorg. Chim. Acta, 2011, 373(1), 47–53.
Nobbs, J. D.; Tomov, A. K.; Cariou, R.; Gibson, V. C.; White, A. J. P.; Britovsek, G. J. P. Thio-Pybox and Thio-Phebox complexes of chromium, iron, cobalt and nickel and their application in ethylene and butadiene polymerisation catalysis. Dalton Trans.,2012, 41(19), 5949–5964.
Zhang, J. S.; Gao, W.; Lang, X. M.; Wu, Q. L.; Zhang, L.; Mu, Y. Ni(Ⅱ) and Fe(Ⅱ) complexes based on bis(imino)aryl pincer ligands: synthesis, structural characterization and catalytic activities. Dalton Trans.,2012, 41(32), 9639–9645.
Gong, D. R.; Jia, X. Y.; Wang, B. L.; Zhang, X. Q.; Jiang, L. S. Synthesis, characterization, and butadiene polymerization of iron(III), iron(II) and cobalt(II) chlorides bearing 2,6-bis(2-benzimidazolyl)pyridyl or 2,6-bis(pyrazol)pyridine ligand. J. Organomet. Chem., 2012, 702, 10–18.
Liu, H.; Jia, X. Y.; Wang, F.; Dai, Q. Q.; Wang, B. L.; Bi, J. F.; Zhang, C. Y.; Zhao, L. P.; Bai, C. X.; Hu, Y. M.; Zhang, X. Q. Synthesis of bis(N-arylcarboximidoylchloride)pyridine cobalt(II) complexes and their catalytic behavior for 1,3-butadiene polymerization. Dalton Trans.,2013, 42(37), 13723–13732.
Jiang, X. B.; Wen, X. L.; Sun, W. H.; He, A. H. Polymerization of isoprene catalyzed by 2-(methyl-2-benzimidazolyl)-6-(1-(arylimino) ethyl) pyridine iron(III) trichloride with an additional donor. J. Polym. Sci. A, 2014, 52(17), 2395–2398.
Gong, D. R.; Liu, W.; Pan, W. J.; Chen, T.; Jia, X. Y.; Huang, K. W.; Zhang, X. Q. Tunable regioselectivity in 1, 3-butadiene polymerization by using 2,6-bis(dimethyl-2-oxazolin-2-yl) pyridine incorporated transition metal (Cr, Fe and Co) catalysts. J. Mol. Catal. A, 2015, 406, 78–84.
Han, Z. Y.; Zhang, Y. Q.; Wang, L. A.; Zhu, G. Q.; Kuang, J. A.; Zhu, G. Y.; Xu, G. Q.; Wang, Q. G. 3,4-Enhanced polymerization of isoprene catalyzed by side-arm tridentate iminopyridine iron complex with high activity: optimization via response surface methodology. Polymers, 2023, 15(5), 1231.
0
浏览量
73
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构