浏览全部资源
扫码关注微信
1..武汉工程大学材料科学与工程学院,武汉 430205
2..湖北省三峡实验室,宜昌 443007
*季家友,E-mail: Jijy@wit.edu.cn
纸质出版日期:2024-04-20,
收稿日期:2023-08-24,
录用日期:2023-12-01
扫 描 看 全 文
黄勉如, 李亮, 孙春英, 张豪, 李少平, 季家友. 聚吡咯包裹碳化硅气凝胶复合材料的电化学和吸波性能. 高分子通报, 2024, 37(4), 513–522
Huang, M. R.; Li, L.; Sun, C. Y.; Zhang, H.; Li, S. P.; Ji, J. Y. Electrochemical and microwave absorbing properties of polypyrrole coated silicon carbide aerogel composites. Polym. Bull. (in Chinese), 2024, 37(4), 513–522
黄勉如, 李亮, 孙春英, 张豪, 李少平, 季家友. 聚吡咯包裹碳化硅气凝胶复合材料的电化学和吸波性能. 高分子通报, 2024, 37(4), 513–522 DOI: 10.14028/j.cnki.1003-3726.2024.23.293.
Huang, M. R.; Li, L.; Sun, C. Y.; Zhang, H.; Li, S. P.; Ji, J. Y. Electrochemical and microwave absorbing properties of polypyrrole coated silicon carbide aerogel composites. Polym. Bull. (in Chinese), 2024, 37(4), 513–522 DOI: 10.14028/j.cnki.1003-3726.2024.23.293.
聚吡咯(polypyrrole
PPy)由于具有高比电容、高电导率、高柔韧性和结构多样性而被用作超级电容器的电极材料,而且可以与其他材料复合,能够提高介电损耗从而提高吸波性能。采用化学原位聚合法,合成了PPy包覆SiC气凝胶复合材料,有效解决了PPy在充放电过程中因离子的掺杂和去掺杂而变得不稳定,导致PPy基超级电容器循环稳定性下降等问题。用三电极体系测试复合材料的电化学性能,用矢量网络分析仪进行电磁参数测试。结果表明,在0.5 A·g
-1
的电流密度下比电容达309.65 F·g
-1
,在1000次循环后比电容保持率为94.2%,具有良好的循环稳定性;气凝胶经历了100次砝码的反复压能保持95%的高度,抗压强度可达105 kPa;在2.2 GHz的有效吸收强度为22.32 dB,而PPy只有8.99 dB,有效提高了吸收强度。因此,SiC/PPy复合材料是很有应用前景的超级电容器电极材料和电磁波吸收材料。
Polypyrrole (PPy) is used as an electrode material for supercapacitors due to its high specific capacitance
high conductivity
high flexibility and structural diversity. It can be compounded with other materials to improve dielectric loss and absorption performance. PPy-coated silicon carbide (SiC) aerogel composites were synthesized by chemical
in-situ
polymerization
which effectively solved the problems of the decline of cycle stability of PPy-based supercapacitors induced by the ion doping/dedoping during the charging/discharging process. The electrochemical performance of the composite material was measured by the three-electrode system
and the electromagnetic parameters were tested with the vector network analyzer. The results show that the specific capacitance reaches 309.65 F·g
-1
at a current density of 0.5 A·g
-1
and the specific capacitance retention rate is 94.2% after 1000 cycles
indicating good cycle stability. The aerogel can maintain a height of 95% subjected to 100 repeated pressure. The compressive strength is 105 kPa. The effective absorption intensity at 2.2 GHz is 22.32 dB
while the value for PPy is only 8.99 dB
which effectively improve absorption intensity. Therefore
SiC/PPy composites are promising electrode materials for supercapacitors and electromagnetic wave absorbing materials.
碳化硅聚吡咯气凝胶复合材料电化学性能吸波材料
Silicon carbidePolypyrroleAerogelsCompositesElectrochemical performanceAbsorbing materials
Raza, W.; Ali, F.; Raza, N.; Luo, Y. W.; Kim, K. H.; Yang, J. H.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy, 2018, 52, 441–473.
Sebestyén, V. Renewable and sustainable energy reviews: environmental impact networks of renewable energy power plants. Renew. Sustain. Energy Rev., 2021, 151, 111626.
Ma, X. R.; Jing, Z. F.; Feng, C. C.; Qiao, M. Z.; Xu, D. H. Research and development progress of porous foam-based electrodes in advanced electrochemical energy storage devices: a critical review. Renew. Sustain. Energy Rev., 2023, 173, 113111.
Ramírez, A. M. R.; Del Valle, M. A.; Ortega, E.; Díaz, F. R.; Gacitúa, M. A. Capacitors based on polypyrrole nanowire electrodeposits. Polymers, 2022, 14(24), 5476.
Xu, Q.; Wei, C. Z.; Fan, L. L.; Rao, W. D.; Xu, W. L.; Liang, H.; Xu, J. Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl. Surf. Sci., 2018, 460, 84–91.
汪杰. 聚吡咯及其复合材料的制备及性能研究. 合肥: 中国科学技术大学, 2017.
Samancı, M.; Daş, E.; Bayrakçeken Yurtcan, A. Carbon aerogel and their polypyrrole composites used as capacitive materials. Int. J. Energy Res., 2021, 45(2), 1729–1747.
Xu, J.; Wang, D. X.; Fan, L. L.; Yuan, Y.; Wei, W.; Liu, R. N.; Gu, S. J.; Xu, W. L. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org. Electron., 2015, 26, 292–299.
Wang, J. P.; Xu, Y. L.; Zhu, J. B.; Ren, P. G. Electro-chemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J. Power Sources, 2012, 208, 138–143.
Kashani, H.; Chen, L. Y.; Ito, Y.; Han, J. H.; Hirata, A.; Chen, M. W. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391–400.
Bae, S. G.; Oh, M.; Lee, Y.; Kim, S.; Jeong, Y. G.; Lee, J. M.; Kim, J.; Shin, D. G. Fabrication and high-temperature performance evaluation of silicon carbide-Hafnium carbide nanocomposite fiber. Ceram. Int., 2022, 48(9), 13295–13303.
Yang, H. J.; Yuan, J.; Li, Y.; Hou, Z. L.; Jin, H. B.; Fang, X. Y.; Cao, M. S. Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Commun., 2013, 163, 1–6.
Wang, X. W.; Yan, H. X.; Xue, R.; Qi, S. H. A Polypyrrole/CoFe2O4/hollow glass microspheres three-layer sandwich structure microwave absorbing material with wide absorbing bandwidth and strong absorbing capacity. J. Mater. Sci. Mater. Electron., 2017, 28(1), 519–525.
Kuang, J. L.; Qin, Q.; Xiao, T.; Hou, X. J.; Jiang, P.; Wang, Q.; Cao, W. B. Tunable dielectric permittivity and microwave absorption properties of Pt-decorated SiC nanowires prepared by magnetic sputtering. Mater. Lett., 2019, 245, 90–93.
Zhang, K.; Sun, M. X.; Jiang, W. C.; Wang, Y.; Wang, D. R.; Wu, F.; Xie, A. M.; Dong, W. A core-shell polypyrrole@silicon carbide nanowire (PPy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. RSC Adv., 2016, 6(49), 43056–43059.
高娅娅, 李沂蒙, 魏乐倩, 杨擎宇, 毛吉富, 王璐. 仿蠕虫状聚吡咯基复合纤维的构建及应变不敏感导电性能研究. 高分子学报, 2022, 53(1), 46–55.
韩玮. 新型氧化还原活性电解液在超级电容器中的应用. 兰州: 兰州理工大学, 2016.
朱建华, 张倩, 张瑞云, 刘丽芳. NiCo2O4修饰N掺杂交联碳纳米纤维电极的制备及其电化学性能研究. 高分子学报, 2022, 53(12), 1484–1492.
Hamra, A. A. B.; Lim, H. N.; Hafiz, S. M.; Kamaruzaman, S.; Rashid, S. A.; Yunus, R.; Altarawneh, M.; Jiang, Z. T.; Huang, N. M. Performance stability of solid-state polypyrrole-reduced graphene oxide-modified carbon bundle fiber for supercapacitor application. Electrochim. Acta, 2018, 285, 9–15.
Zhang, Y. Y.; Zhen, Z.; Zhang, Z. L.; Lao, J. C.; Wei, J. Q.; Wang, K. L.; Kang, F. Y.; Zhu, H. W. In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode. Electrochim. Acta, 2015, 157, 134–141.
Tran, C. B.; Zondaka, Z.; Le, Q. B.; Velmurugan, B. K.; Kiefer, R. Polypyrrole with phosphor tungsten acid and carbide-derived carbon: change of solvent in electropolymerization and linear actuation. Materials, 2021, 14(21), 6302.
Zhang, J. T.; Zhao, X. S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C, 2012, 116(9), 5420–5426.
张牧. 电/磁损耗型吸波材料的制备及性能研究. 镇江: 江苏大学, 2021.
纪涵昱. 介电/磁损耗介质掺杂石墨烯复合气凝胶的制备及其吸波性能研究. 郑州: 郑州航空工业管理学院, 2022.
Liu, X. F.; Nie, X. Y.; Yu, R. H.; Feng, H. B. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J., 2018, 334, 153–161.
Quan, B.; Liang, X. H.; Ji, G. B.; Ma, J. N.; Ouyang, P. Y.; Gong, H.; Xu, G. Y.; Du, Y. W. Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces, 2017, 9(11), 9964–9974.
Lan, X. L.; Liang, C. Y.; Wu, M. S.; Wu, N.; He, L.; Li, Y. B.; Wang, Z. J. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves. J. Phys. Chem. C, 2018, 122(32), 18537–18544.
Wu, F.; Sun, M. X.; Chen, C. C.; Zhou, T.; Xia, Y. L.; Xie, A. M.; Shang, Y. F. Controllable coating of polypyrrole on silicon carbide nanowires as a core-shell nanostructure: a facile method to enhance attenuation characteristics against electromagnetic radiation. ACS Sustain. Chem. Eng., 2019, 7(2), 2100–2106.
0
浏览量
95
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构