浏览全部资源
扫码关注微信
1.大连大学生命健康学院,大连 116622
2.大连民族大学生命科学学院,大连 116600
*吴海歌,E-mail: haige-hu@163.com
纸质出版日期:2024-10-20,
网络出版日期:2024-06-11,
收稿日期:2024-01-09,
录用日期:2024-04-30
移动端阅览
李岩峰, 王勇, 白桐宁, 董硕, 王康康, 孙昊鉴, 吴海歌, 姚子昂. 壳聚糖/k-卡拉胶寡糖温敏水凝胶的制备与表征. 高分子通报, 2024, 37(10), 1428–1437
Li, Y. F.; Wang, Y.; Bai, T. N.; Dong, S.; Wang, K. K.; Sun, H. J.; Wu, H. G.; Yao, Z. A. Synthesis and analysis of thermosensitive hydrogels from chitosan/k-carrageenan oligosaccharides. Polym. Bull. (in Chinese), 2024, 37(10), 1428–1437
李岩峰, 王勇, 白桐宁, 董硕, 王康康, 孙昊鉴, 吴海歌, 姚子昂. 壳聚糖/k-卡拉胶寡糖温敏水凝胶的制备与表征. 高分子通报, 2024, 37(10), 1428–1437 DOI: 10.14028/j.cnki.1003-3726.2024.24.010.
Li, Y. F.; Wang, Y.; Bai, T. N.; Dong, S.; Wang, K. K.; Sun, H. J.; Wu, H. G.; Yao, Z. A. Synthesis and analysis of thermosensitive hydrogels from chitosan/k-carrageenan oligosaccharides. Polym. Bull. (in Chinese), 2024, 37(10), 1428–1437 DOI: 10.14028/j.cnki.1003-3726.2024.24.010.
利用
k
-卡拉胶寡糖(KOS)和壳聚糖(CS)带有不同电荷的特点,以KOS为交联剂,通过离子交联制备可以缓释KOS和可控降解的温敏性水凝胶。将CS酸性溶液与KOS水溶液在室温下混合,制备KOS与CS质量比为2.25:1.0~2.75:1.0的系列凝胶体系。使用试管倒置法测凝胶时间,差值法测相变体积变化,称重法测溶胀度和降解率,苯酚-硫酸法测凝胶对KOS的缓释,在电子扫描显微镜(SEM)下观察凝胶表面结构,MTT法检测中枢神经免疫效应细胞(N9)在凝胶上的粘附和增殖情况。结果表明KOS/CS系列水凝胶具有温度响应性,在4 ℃呈现为液态的溶胶状态,在生理温度条件下(37 ℃)可相变为固形水凝胶,凝胶时间为(300±50)~(17±5) min。凝胶后具有明显的相变体积变化,孔隙率为(78.7±2.5)%~(92.9±2.1)%,溶胀率为(558.7±5.046)%~(853.9±6.143)%,降解率为(77.46±3.520)%~(70.68±4.080)%以及KOS缓释程度为(30.38±0.952 3)%~(24.24±3.988)%;该凝胶在SEM下呈纤维多孔结构,且支持N9细胞的黏附和增殖。KOS/CS水凝胶具有良好的温敏性、溶胀性、可控降解性、KOS缓释能力和细胞相容性,可为药物递送和组织工程领域提供较好的生物材料。
Taking advantage of the different charges of k-carrageenan oligosaccharide (KOS) and chitosan (CS)
using KOS as a cross-linking agent
a thermosensitive hydrogel which can release KOS and control degradation can be prepared by ionic cross-linking glue. The CS acid solution and the KOS aqueous solution are mixed at room temperature to prepare a series of gel systems with the mass ratio of KOS to CS ranging from 2.25:1.0 to 2.75:1.0. The gel time is determined by the test tube inversion method
the volume change of phase transition is measured by the difference method
the swelling degree and degradation rate are measured by the weighing method
the sustained release of KOS from the gel is measured by the phenol-sulfuric acid method
and gel surface structure is observed under a scanning electron microscope (SEM). The adhesion and proliferation of central nervous immune effector cells (N9) on the gel were detected by MTT method. The results show that a series of KOS/CS hydrogels are temperature-responsive
appearing in a liquid sol state at 4 °C
and can be phase-transformed into solid hydrogels at physiological temperature (37 °C)
and the gel time is 300±50–17±5 min. After gelation
there is obvious phase transition volume change
the porosity is (78.7±2.5)% – (92.9±2.1)%
the swelling rate is (558.7±5.046)% – (853.9±6.143)%
the degradation rate is (77.46±3.520)% – (70.68±4.080)% and the KOS sustained release degree is (30.38±0.952 3)% – (24.24±3.988)%; the gel shows a fibrous porous structure under SEM
and supports the adhesion and proliferation of N9 cells. KOS/CS hydrogel has good temperature sensitivity
swelling property
controllable degradability
sustained release ability for KOS and cytocompatibility
which can provide a better biomaterial for the fields of drug delivery and tissue engineering.
壳聚糖k-卡拉胶寡糖水凝胶生物相容性
Chitosank-Carrageenan oligosaccharideHydrogelBiocompatibility
Jose, G.; Shalumon, K. T.; Chen, J. P.Natural polymers based hydrogels for cell culture applications. Curr. Med. Chem., 2020, 27(16), 2734–2776.
Ijaz, U.; Sohail, M.; Usman Minhas, M.; Khan, S.; Hussain, Z.; Kazi, M.; Ahmed Shah, S.; Mahmood, A.; Maniruzzaman, M.Biofunctional hyaluronic acid/κ-carrageenan injectable hydrogels for improved drug delivery and wound healing. Polymers, 2022, 14(3), 376.
Wang, C. Y.; Hsiao, C. Y.; Tsai, K. L.; Cheng, Y. H.Injectable thermosensitive chitosan-based hydrogel containing ferulic acid for treating peripheral arterial disease. J. Tissue Eng. Regen. Med., 2020, 14(10), 1438–1448.
Rahmanian-Devin, P.; Baradaran Rahimi, V.; Askari, V. R.Thermosensitive chitosan-β-glycerophosphate hydrogels as targeted drug delivery systems: an overview on preparation and their applications. Adv. Pharmacol. Pharm. Sci., 2021, 2021, 6640893.
Jafari, A.; Farahani, M.; Sedighi, M.; Rabiee, N.; Savoji, H.Carrageenans for tissue engineering and regenerative medicine applications: a review. Carbohydr. Polym., 2022, 281, 119045.
Li, W. Q.; Qamar, S. A.; Qamar, M.; Basharat, A.; Bilal, M.; Iqbal, H. M. N.Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants. Int. J. Biol. Macromol., 2021, 190, 700–712.
Izawa, H.; Yonemura, T.; Nakamura, Y.; Toyoshima, Y.; Kawakami, M.; Saimoto, H.; Ifuku, S.Hierarchical surface wrinkles and bumps generated on chitosan films having double-skin layers comprising topmost carrageenan layers and polyion complex layers. Carbohydr. Polym., 2022, 284, 119224.
Khaliq, T.; Sohail, M.; Minhas, M. U.; Ahmed Shah, S.; Jabeen, N.; Khan, S.; Hussain, Z.; Mahmood, A.; Kousar, M.; Rashid, H.Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections. Int. J. Biol. Macromol., 2022, 197, 157–168.
Huang, L.; Jin, S. H.; Bao, F.; Tang, S. X.; Yang, J. Y.; Peng, K. L.; Chen, Y.Construction of a physically cross-linked carrageenan/chitosan/calcium ion double-network hydrogel for 3-nitro-1,2,4-triazole-5-one removal. J. Hazard. Mater., 2022, 424, 127510.
Ma, C.; Li, Q. W.; Dai, X. J.Carrageenan oligosaccharides extend life span and health span in male Drosophila melanogaster by modulating antioxidant activity, immunity, and gut microbiota. J. Med. Food, 2021, 24(1), 101–109.
Johnson, A.; Kong, F. B.; Miao, S.; Lin, H. T V.; Thomas, S.; Huang, Y. C.; Kong, Z. L.Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci. Rep., 2020, 10(1), 18037.
孟显丽, 陈国华, 侯进, 孙明昆. 关于端基分析法测定壳低聚糖的相对数均分子质量问题的探讨. 中国海洋大学学报(自然科学版), 2005, 35(1), 142–144.
陈孝云, 王洪新, 吕文平, 马朝阳, 江琦. 不同提取方法对佛手多糖性质和乙醇脱氢酶活性的影响. 安徽农业科学, 2018, 46(23), 131–135.
Panyamao, P.; Ruksiriwanich, W.; Sirisa-Ard, P.; Charumanee, S.Injectable thermosensitive chitosan/pullulan-based hydrogels with improved mechanical properties and swelling capacity. Polymers, 2020, 12(11), 2514.
Maiz-Fernández, S.; Guaresti, O.; Pérez-Álvarez, L.; Ruiz-Rubio, L.; Gabilondo, N.; Vilas-Vilela, J. L.; Lanceros-Mendez, S.β-Glycerol phosphate/genipin chitosan hydrogels: a comparative study of their properties and diclofenac delivery. Carbohydr. Polym., 2020, 248, 116811.
Kondo, M.; Mulianda, R.; Matamura, M.; Shibata, T.; Mishima, T.; Jayanegara, A.; Isono, N.Validation of a phenol-sulfuric acid method in a microplate format for the quantification of soluble sugars in ruminant feeds. Anim. Sci. J., 2021, 92(1), e13530.
Stavarache, C. E.; Ghebaur, A.; Dinescu, S.; Samoilă, I.; Vasile, E.; Vlasceanu, G. M.; Iovu, H.; Gârea, S. A.5-Aminosalicylic acid loaded chitosan-carrageenan hydrogel beads with potential application for the treatment of inflammatory bowel disease. Polymers, 2021, 13(15), 2463.
Volod’ko, A. V.; Davydova, V. N.; Petrova, V. A.; Romanov, D. P.; Pimenova, E. A.; Yermak, I. M.Comparative analysis of the functional properties of films based on carrageenans, chitosan, and their poly-electrolyte complexes. Mar. Drugs, 2021, 19(12), 704.
孟凡玲, 罗亮, 宁辉, 左榘. κ-卡拉胶研究进展. 高分子通报, 2003, 16(5), 49–56.
徐正义, 孙多先. 壳聚糖-聚阴离子复合絮凝剂的应用. 化学工业与工程, 2005, 22(6), 419–421.
Chen, Y.; Yan, X. T.; Zhao, J.; Feng, H. Y.; Li, P. W.; Tong, Z. R.; Yang, Z. M.; Li, S. D.; Yang, J. Y.; Jin, S. H.Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydr. Polym., 2018, 191, 8–16.
Xin, H.; Naficy, S.Drug delivery based on stimuli-responsive injectable hydrogels for breast cancer therapy: a review. Gels, 2022, 8(1), 45.
Li, J. J.; Yang, B. G.; Qian, Y. F.; Wang, Q. Y.; Han, R. J.; Hao, T.; Shu, Y.; Zhang, Y. B.; Yao, F. L.; Wang, C. Y.Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(7), 1498–1510.
Yoshida, C. M. P.; Pacheco, M. S.; de Moraes, M. A.; Lopes, P. S.; Severino, P.; Souto, E. B.; da Silva, C. F.Effect of chitosan and aloe vera extract concentrations on the physicochemical properties of chitosan biofilms. Polymers, 2021, 13(8), 1187.
Lee, S.; Choi, J.; Youn, J.; Lee, Y.; Kim, W.; Choe, S.; Song, J.; Reis, R. L.; Khang, G.Development and evaluation of gellan gum/silk fibroin/chondroitin sulfate ternary injectable hydrogel for cartilage tissue engineering. Biomolecules, 2021, 11(8), 1184.
Ciro, Y.; Rojas, J.; Alhajj, M. J.; Carabali, G. A.; Salamanca, C. H.Production and characterization of chitosan-polyanion nanoparticles by polyelectrolyte complexation assisted by high-intensity sonication for the modified release of methotrexate. Pharmaceuticals, 2020, 13(1), 11.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构