浏览全部资源
扫码关注微信
1.华侨大学材料科学与工程学院,厦门 361021
2.中国科学院上海高等研究院,上海 201204
*熊兴泉,E-mail: xxqluli@hqu.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-07-20,
收稿日期:2024-02-19,
录用日期:2024-05-23
移动端阅览
赖石林, 陆颖琪, 张辉, 高利柱, 熊兴泉. 树状化核桃壳基催化剂的制备及其催化CO2与胺的甲酰化反应. 高分子通报, 2024, 37(10), 1459–1469
Lai, S. L.; Lu, Y. Q.; Zhang, H.; Gao, L. Z.; Xiong, X. Q. Preparation of imidazole salt dendrimers functionalized walnut shell powder-based catalysts and application in N-formylation of CO2. Polym. Bull. (in Chinese), 2024, 37(10), 1459–1469
赖石林, 陆颖琪, 张辉, 高利柱, 熊兴泉. 树状化核桃壳基催化剂的制备及其催化CO2与胺的甲酰化反应. 高分子通报, 2024, 37(10), 1459–1469 DOI: 10.14028/j.cnki.1003-3726.2024.24.045.
Lai, S. L.; Lu, Y. Q.; Zhang, H.; Gao, L. Z.; Xiong, X. Q. Preparation of imidazole salt dendrimers functionalized walnut shell powder-based catalysts and application in N-formylation of CO2. Polym. Bull. (in Chinese), 2024, 37(10), 1459–1469 DOI: 10.14028/j.cnki.1003-3726.2024.24.045.
以林产工业废弃物核桃壳粉(WS)为原料,通过对其进行多步化学改性,分别制备出外围被不同代数咪唑盐(IM)树状分子(WS-G
n
-FeCl
3
(
n
=1
2
3))功能化的催化剂载体(G
n
-IM (
n
=1
2
3)),然后将该系列载体分别负载FeCl
3
,制备出核桃壳粉基异相催化剂WS-G
n
-FeCl
3
(
n
=1
2
3)。通过采用傅里叶红外(FTIR)、热重分析(TG)、元素分析(EA)等对WS-G
n
-FeCl
3
(
n
=1
2
3)进行了表征分析。将所得催化剂应用于有机胺的甲酰化反应,结果表明树状分子代数对催化剂的催化活性有着重要影响,第三代催化剂WS-G3-FeCl
3
显示出最高催化活性。以WS-G3-FeCl
3
为催化剂催化有机胺与CO
2
之间的甲酰化反应,在100 ℃以及CO
2
氛围中(1.0 MPa)反应1 h,即可高效合成出甲酰胺类化合物,且WS-G3-FeCl
3
容易回收与重复使用,该催化剂在重复使用10次后活性没有明显的降低。
Walnut shell (WS) powder
a kind of industrial waste of forest products
was used as raw material to prepare WS-based supports WS-G
n
-IM (
n
=1
2
3) functionalized with imidazole salt dendrimers by multi-step chemical modification
and then the WS-based heterogeneous catalysts WS-G
n
-FeCl
3
(
n
=1
2
3) were obtained by complexing WS-G
n
-IM (
n
=1
2
3) with FeCl
3
. WS-G
n
-FeCl
3
(
n
=1
2
3) were characterized by various characterization methods
such as Fourier-transform infrared (FTIR) spectroscopy
thermogravimetric analysis (TGA) and elemental analysis. In addition
WS-G
n
-FeCl
3
(
n
=1
2
3) were used in the catalytic
N
-formylation reaction with CO
2
. The results showed that the generation of imidazole salt dendrimers had an important influence on the catalytic activity of the catalysts
and WS-G3-FeCl
3
showed the highest
catalytic activity. Using WS-G3-FeCl
3
to catalyze the
N
-formylation reaction between organic amines and CO
2
(1.0 MPa)
formamide compounds can be efficiently synthesized at a temperature of 100 ℃ for 1 h. WS-G3-FeCl
3
could be easily recovered and reused at least 10 times without a significant reduction in activity.
核桃壳粉树状分子CO2甲酰胺异相催化
Walnut shell powderDendrimersCO2N-formylationHeterogeneous catalysis
Qiu, L. Q.; Li, H. R.; He, L. N.Incorporating catalytic units into nanomaterials: rational design of multipurpose catalysts for CO2 valorization. Acc. Chem. Res., 2023, 56(16), 2225–2240.
Lin, S. S.; Liu, J. G.; Ma, L. L.A review on recent developments in N-methylation using CO2. J. CO2 Util., 2021, 54, 101759.
Wang, L.; Qi, C.; Xiong, W.; Jiang, H.Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. Chin. J. Catal., 2022, 43(7), 1598–1617.
李怡萌, 张玲, 马雷, 邓伟侨. 多孔高分子材料对二氧化碳的捕获与转化. 高分子通报, 2018, (6), 231–242.
Zhu, Q.; Ma, J.; Kang, X.; Sun, X.; Liu, H.; Hu, J.; Liu, Z.; Han, B.Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem. Int. Ed., 2016, 55(31), 9012–9016.
Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R.Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew. Chem. Int. Ed., 2018, 57(49), 15948–15982.
Zhang, Y. J.; Wang, H. L.; Yuan, H. K.; Shi, F.Hydroxyl group-regulated active nano-Pd/C catalyst generation viain situ reduction of Pd(NH3)xCly/C for N-formylation of amines with CO2/H2. ACS Sustain. Chem. Eng., 2017, 5(7), 5758–5765.
Lu, L.; Sun, X. F.; Ma, J.; Zhu, Q. G.; Wu, C. Y.; Yang, D. X.; Han, B. X.Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. Sci. China Chem., 2018, 61(2), 228–235.
Zhu, Q. G.; Ma, J.; Kang, X. C.; Sun, X. F.; Hu, J. Y.; Yang, G. Y.; Han, B. X.Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system. Sci. China Chem., 2016, 59(5), 551–556.
Luo, R. C.; Yang, Z.; Zhang, W. Y.; Zhou, X. T.; Ji, H. B.Recyclable bifunctional aluminum salen catalyst for CO2 fixation: the efficient formation of five-membered heterocyclic compounds. Sci. China Chem., 2017, 60(7), 979–989.
He, Z. H.; Liu, H. Z.; Qian, Q. L.; Lu, L.; Guo, W. W.; Zhang, L. J.; Han, B. X.N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Sci. China Chem., 2017, 60(7), 927–933.
Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M.Choline-based ionic liquids for CO2 capture and conversion. Sci. China Chem., 2019, 62(2), 256–261.
Chongdar, S.; Bhattacharjee, S.; Azad, S.; Bal, R.; Bhaumik, A.Selective N-formylation of amines catalysed by Ag NPs festooned over amine functionalized SBA-15 utilizing CO2 as C1 source. Mol. Catal., 2021, 516, 111978.
Chen, X. C.; Guo, L.; Shi, G. H.; Zhao, K. C.; Lu, Y.; Liu, Y.Can CO2 be a catalyst? Yes, CO2-catalyzed N-formylation of aliphatic amines with DMF. Mol. Catal., 2022, 528, 112431.
Li, X. Y.; Fu, H. C.; Liu, X. F.; Yang, S. H.; Chen, K. H.; He, L. N.Design of Lewis base functionalized ionic liquids for the N-formylation of amines with CO2 and hydrosilane: The cation effects. Catal. Today, 2020, 356, 563–569.
Cao, Q.; Zhang, L. L.; Zhou, C.; He, J. H.; Marcomini, A.; Lu, J. M.Covalent organic framework-supported Zn single atom catalyst for highly efficient N-formylation of amines with CO2 under mild conditions, Appl. Catal. B: Environ., 2021, 294, 120238.
Wang, P. B.; He, Q.; Zhang, H.; Sun, Q. D.; Cheng, Y. J.; Gan, T.; He, X. H.; Ji, H. B.N-Formylation of amines using phenylsilane and CO2 over ZnO catalyst under mild condition. Catal. Commun., 2021, 149, 106195.
Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D.Selective N-formylation of amines with H2 and CO2 catalyzed by cobalt pincer complexes. ACS Catal., 2017, 7(4), 2500–2504.
黄文斌, 邱丽琪, 任方煜, 何良年. 过渡金属催化CO2氢化反应研究进展. 有机化学, 2021, 41(10), 3914–3934.
Chen, B. C.; Bednarz, M. S.; Zhao, R. L.; Sundeen, J. E.; Chen, P.; Shen, Z. Q.; Skoumbourdis, A. P.; Barrish, J. C.A new facile method for the synthesis of 1-arylimidazole-5-carboxylates. Tetrahedron Lett., 2000, 41(29), 5453–5456.
Tlili, A.; Blondiaux, E.; Frogneux, X.; Cantat, T.Reductive functionalization of CO2 with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chem., 2015, 17(1), 157–168.
Leonard, J.; Blacker, A. J.; Marsden, S. P.; Jones, M. F.; Mulholland, K. R.; Newton, R.A survey of the borrowing hydrogen approach to the synthesis of some pharmaceutically relevant intermediates. Org. Process Res. Dev., 2015, 19(10), 1400–1410.
Corma, A.; Navas, J.; Sabater, M. J.Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev., 2018, 118(4), 1410–1459.
Gopakumar, A.; Lombardo, L.; Fei, Z. F.; Shyshkanov, S.; Vasilyev, D.; Chidambaram, A.; Stylianou, K.; Züttel, A.; Dyson, P. J.A polymeric ionic liquid catalyst for the N-formylation and N-methylation of amines using CO2/PhSiH3. J. CO2 Util., 2020, 41, 101240.
Hett, R.; Fang, Q. K.; Gao, Y.; Hong, Y. P.; Butler, H. T.; Nie, X. Y.; Wald, S. A.Enantio- and diastereoselective synthesis of all four stereoisomers of formoterol. Tetrahedron Lett., 1997, 38(7), 1125–1128.
Eguchi, T.; Kuge, Y.; Inoue, K.; Yoshikawa, N.; Mochida, K.; Uwajima, T.NADPH regeneration by glucose dehydrogenase from Gluconobacter scleroides for l-leucovorin synthesis. Biosci. Biotechnol. Biochem., 1992, 56(5), 701–703.
Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T.Copper-diphosphine complex catalysts for N-formylation of amines under 1 atm of carbon dioxide with polymethylhydrosiloxane. Catal. Sci. Technol., 2013, 3(9), 2392–2396.
Liu, Z. H.; Yang, Z. Z.; Ke, Z. G.; Yu, X. X.; Zhang, H. Y.; Yu, B.; Zhao, Y. F.; Liu, Z. M.Ethanol-mediated N-formylation of amines with CO2/H2 over cobalt catalysts. New J. Chem., 2018, 42(16), 13933–13937.
马润芝, 李云庆, 周宏勇, 王家喜. N, N-二丁基甲酰胺的制备: 二正丁胺存在下二氧化碳催化氢化反应的研究. 有机化学, 2009, 29(11), 1843–1848.
Yu, X. X.; Yang, Z. Z.; Guo, S. E.; Liu, Z. H.; Zhang, H. Y.; Yu, B.; Zhao, Y. F.; Liu, Z. M.Mesoporous imine-based organic polymer: catalyst-free synthesis in water and application in CO2 conversion. Chem. Commun., 2018, 54(55), 7633–7636.
Mitsudome, T.; Urayama, T.; Fujita, S.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K.A titanium dioxide supported gold nanoparticle catalyst for the selective N-formylation of functionalized amines with carbon dioxide and hydrogen. ChemCatChem, 2017, 9(19), 3632–3636.
Yang, Z. Z.; Wang, H.; Ji, G. P.; Yu, X. X.; Chen, Y.; Liu, X. W.; Wu, C. L.; Liu, Z. M.Pyridine-functionalized organic porous polymers: applications in efficient CO2 adsorption and conversion. New J. Chem., 2017, 41(8), 2869–2872.
Cui, X. J.; Zhang, Y.; Deng, Y. Q.; Shi, F.Amine formylation via carbon dioxide recycling catalyzed by a simple and efficient heterogeneous palladium catalyst. Chem. Commun., 2014, 50(2), 189–191.
Wang, X.; Liu, X. N.; Wen, H.; Guo, K.; Brendon, H.; Liu, D.A green, efficient reductive N-formylation of nitro compounds catalyzed by metal-free graphitic carbon nitride supported on activated carbon. Appl. Catal. B Environ., 2023, 321, 122042.
He, Z. H.; Wei, Y. Y.; Li, N.; Sun, Y. C.; Yang, S. Y.; Wang, K.; Wang, W. T.; Ma, X. X.; Liu, Z. T.N-formylation of isoquinoline derivatives with CO2 and H2 over a heterogeneous Ru/ZIF-8 catalyst. J. Exp. Nanosci., 2022, 17(1), 61–74.
许莹莹, 张宇, 肖康曼, 范泽琨, 李德海. 坚果果壳中活性物质体外抗氧化活性研究进展. 食品工业科技, 2016, 37(14), 385–388.
任苗苗, 吕惠生, 张敏华, 王国庆, 孙艳朋. 木质素资源利用的研究进展. 高分子通报, 2012, (8), 44–49.
刘明政, 李长河, 曹成茂, 李心平, 车稷, 赵华洋. 核桃副产物加工关键技术与装置研究现状. 中国农机化学报, 2021, 42(5), 55–74.
董云丹, 硕士论文, 南京: 南京林业大学, 2012.
骆禹璐, 王啸天, 高敏, 李晓媛, 阿合也力开·叶尔肯, 林江丽. 改性天然高分子絮凝剂制备的研究进展. 高分子通报, 2022, (8), 1–11.
车荣睿. 硼氢化钠在有机合成中的新应用. 化学试剂, 1986, 8(2), 94–99.
Nale, D. B.; Rath, D.; Parida, K. M.; Gajengi, A.; Bhanage, B. M.Amine modified mesoporous Al2O3@MCM-41: an efficient, synergetic and recyclable catalyst for the formylation of amines using carbon dioxide and DMAB under mild reaction conditions. Catal. Sci. Technol., 2016, 6(13), 4872–4881.
Du, C. Y.; Chen, Y. F.Zinc powder catalysed formylation and urealation of amines using CO2 as a C1 building block. Chin. J. Chem., 2020, 38(10), 1057–1064.
Zou, Q. Z.; Chen, J. J.; Wang, Y. Z.; Gu, J. R.; Liu, F.; Zhao, T. X.Synthesis of mesoporous PdxCu1–x/Al2O3–y bimetallic catalysts via mechanochemistry for selective N-formylation of amines with CO2 and H2. ACS Sustain. Chem. Eng., 2021, 9(48), 16153–16162.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构