浏览全部资源
扫码关注微信
1.聊城大学生物制药研究院,聊城 252059
2.聊城高新生物技术有限公司,聊城 252059
*范治平,E-mail:Fanzhiping@lcu.edu.cn;韩军,E-mail:junhanmail@163.com
*范治平,E-mail:Fanzhiping@lcu.edu.cn;韩军,E-mail:junhanmail@163.com
纸质出版日期:2024-10-20,
网络出版日期:2024-07-02,
收稿日期:2024-04-10,
录用日期:2024-05-21
移动端阅览
张广明, 王保平, 程萍, 范治平, 韩军. 天然高分子抗菌水凝胶伤口敷料研究进展. 高分子通报, 2024, 37(10), 1337–1353
Zhang, G. M.; Wang, B. P.; Cheng, P.; Fan, Z. P.; Han, J. Research progress on natural polymer antibacterial hydrogel wound dressings. Polym. Bull. (in Chinese), 2024, 37(10), 1337–1353
张广明, 王保平, 程萍, 范治平, 韩军. 天然高分子抗菌水凝胶伤口敷料研究进展. 高分子通报, 2024, 37(10), 1337–1353 DOI: 10.14028/j.cnki.1003-3726.2024.24.108.
Zhang, G. M.; Wang, B. P.; Cheng, P.; Fan, Z. P.; Han, J. Research progress on natural polymer antibacterial hydrogel wound dressings. Polym. Bull. (in Chinese), 2024, 37(10), 1337–1353 DOI: 10.14028/j.cnki.1003-3726.2024.24.108.
天然高分子包括多糖和蛋白质等,其来源广泛且具有丰富的功能基团、易于改性,部分天然高分子还兼具抗菌性能和独特生物学性能,这些特点使其在制备抗菌水凝胶敷料中颇具优势。天然高分子水凝胶通常具有良好的生物相容性、可降解性和亲水性等,其三维结构为抗菌物质提供了理想的负载空间。对于抗菌水凝胶敷料的制备,除了材料的选择,交联策略的设计也至关重要。本文详细汇总了近年来天然高分子抗菌水凝胶敷料的制备方法,包括化学交联、物理交联以及杂化交联等;并且根据抗菌性能的来源,将其分为固有抗菌性能的天然高分子水凝胶和负载抗菌物质的天然高分子水凝胶,进而对这两种水凝胶敷料在医疗、健康等领域的应用进行了详细阐述;最后,对天然高分子抗菌水凝胶现存研究瓶颈进行分析并对其未来发展机遇进行展望。
Natural polymers
such as polysaccharides and proteins
are abundant in nature
boasting abundent functional groups that lend themselves readily to modify. Some natural polymers also exhibit inherent antibacterial properties
alongside unique biological attributes. Hydrogels derived from natural polymers typically demonstrate excellent biocompatibility
degradability
and hydrophilicity
owing to their three-dimensional structure which provides an ideal reservoir for antibacterial agents. These attributes confer a distinct advantage upon natural polymers in the formulation of antibacterial hydrogel dressings. Beyond material selection
the choice of crosslinking strategy is pivotal. This work summarizes recent methodologies for the preparation of natural polymer antibacterial hydrogel dressings
encompassing chemical
physical
and hybrid crosslinking techniques. Based on their antibacterial attributes
hydrogels are categorized into two classes: those with inherent antibacterial properties and those laden with antibacterial agents. Detailed accounts are provided regarding the application and potential of these hydrogel dressings in medical
healthcare
and allied domains. Lastly
the extant research bottlenecks are analyzed and the future development for natural polymer antibacterial hydrogels is prospected.
天然高分子抗菌水凝胶伤口敷料
Natural polymerAntibacterial hydrogelWound dressing
Freedman, B. R.; Hwang, C.; Talbot, S.; Hibler, B.; Matoori, S.; Mooney, D. J.Breakthrough treatments for accelerated wound healing. Sci. Adv., 2023, 9(20), eade7007.
Mai, B. J.; Jia, M. Q.; Liu, S. P.; Sheng, Z. H.; Li, M.; Gao, Y. R.; Wang, X. B.; Liu, Q. H.; Wang, P.Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl. Mater. Interfaces, 2020, 12(9), 10156–10169.
Pranantyo, D.; Yeo, C. K.; Wu, Y.; Fan, C.; Xu, X. F.; Yip, Y. S.; Vos, M. I. G.; Mahadevegowda, S. H.; Lim, P. L. K.; Yang, L.; Hammond, P. T.; Leavesley, D. I.; Tan, N. S.; Chan-Park, M. B.Hydrogel dressings with intrinsic antibiofilm and antioxidative dual functionalities accelerate infected diabetic wound healing. Nat. Commun., 2024, 15(1), 954.
Aliakbar Ahovan, Z.; Esmaeili, Z.; Eftekhari, B. S.; Khosravimelal, S.; Alehosseini, M.; Orive, G.; Dolatshahi-Pirouz, A.; Pal Singh Chauhan, N.; Janmey, P. A.; Hashemi, A.; Kundu, S. C.; Gholipourmalekabadi, M.Antibacterial smart hydrogels: new hope for infectious wound management. Mater Today Bio, 2022, 17, 100499.
Wichterle, O.; Lím, D.Hydrophilic gels for biological use. Nature, 1960, 185, 117–118.
Zhang, K. X.; Wu, J.; Zhang, W. J.; Yan, S. F.; Ding, J. X.; Chen, X. S.; Cui, L.; Yin, J. B.In situ formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(L-glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. J. Mater. Chem. B, 2018, 6(47), 7822–7833.
Norahan, M. H.; Pedroza-González, S. C.; Sánchez-Salazar, M. G.; Álvarez, M. M.; de Santiago, G. T.Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater., 2022, 24, 197–235.
Dobashi, Y.; Yao, D.; Petel, Y.; Nguyen, T. N.; Sarwar, M. S.; Thabet, Y.; Ng, C. L. W.; Scabeni Glitz, E.; Nguyen, G. T. M.; Plesse, C.; Vidal, F.; Michal, C. A.; Madden, J. D. W.Piezoionic mechanoreceptors: force-induced Current generation in hydrogels. Science, 2022, 376(6592), 502–507.
Liu, Y. N.; Wang, R.; Wang, D. B.; Sun, Z. L.; Liu, F.; Zhang, D. Q.; Wang, D. Y.Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken. Food Hydrocoll., 2022, 127, 107546.
Yang, S.; Wang, F.; Han, H. J.; Santos, H. A.; Zhang, Y.; Zhang, H. B.; Wei, J.; Cai, Z. W.Fabricated technology of biomedical micro-nano hydrogel. Biomed. Technol., 2023, 2, 31–48.
Tian, B. R.; Liu, J. Y.Smart stimuli-responsive chitosan hydrogel for drug delivery: a review. Int. J. Biol. Macromol., 2023, 235, 123902.
Li, J.; Zhai, Y. N.; Xu, J. P.; Zhu, X. Y.; Yang, H. R.; Che, H. J.; Liu, C. K.; Qu, J. B.An injectable collagen peptide-based hydrogel with desirable antibacterial, self-healing and wound-healing properties based on multiple-dynamic crosslinking. Int. J. Biol. Macromol., 2024, 259(Pt 1), 129006.
Zhang, J. Q.; Zhang, S. W.; Liu, C.; Lu, Z. T.; Li, M. F.; Hurren, C.; Wang, D.Photopolymerized multifunctional sodium alginate-based hydrogel for antibacterial and coagulation dressings. Int. J. Biol. Macromol., 2024, 260(Pt 2), 129428.
Shang, S. L.; Zhuang, K. T.; Chen, J. W.; Zhang, M.; Jiang, S. M.; Li, W. G.A bioactive composite hydrogel dressing that promotes healing of both acute and chronic diabetic skin wounds. Bioact. Mater., 2024, 34, 298–310.
Chauhan, N.; Saxena, K.; Jain, U.Hydrogel based materials: a progressive approach towards advancement in biomedical applications. Mater. Today Commun., 2022, 33, 104369.
Zhang, M.; Li, S. D.; Yuan, X. B.; Zhao, J.; Hou, X.An in situ catechol functionalized ε-polylysine/polyacrylamide hydrogel formed by hydrogen bonding recombination with high mechanical property for hemostasis. Int. J. Biol. Macromol., 2021, 191, 714–726.
Chen, X.; Zhang, M. F.; Zhu, D.; Zhang, J.; Shi, K.; Yang, H. J.; Gu, S. J.; Xiao, P.; Zhou, Y. S.Photocrosslinkable carboxylated polyvinyl alcohol nanocomposite hydrogels with enhanced compressive strength and cell adhesion. Eur. Polym. J., 2023, 196, 112252.
Li, Q.; Wu, C.; Zhang, B. J.Hybrid hydrogels based on polyvinyl alcohol, branched polyethylenimine, polydopamine, and phosphonium-based ionic liquid for effective synergetic antibacterial applications. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 648, 129277.
Dalalibera, A.; Vilela, P. B.; Vieira, T.; Becegato, V. A.; Paulino, A. T.Removal and selective separation of synthetic dyes from water using a polyacrylic acid-based hydrogel: characterization, isotherm, kinetic, and thermodynamic data. J. Environ. Chem. Eng., 2020, 8(5), 104465.
Luo, K. X.; Gao, Y. Y.; Zhang, Y. F.; Chen, W.; Tang, S.Chitosan/polyacrylic acid/octadecene double-crosslinked network hydrogel functionalized porous silica microspheres for multimode liquid chromatographic separation. J. Chromatogr. A, 2023, 1709, 464390.
Zhou, J. Y.; Allonas, X.; Ibrahim, A.; Liu, X. X.Progress in the development of polymeric and multifunctional photoinitiators. Prog. Polym. Sci., 2019, 99, 101165.
韦东来, 谢涛, 关欣, 叶冰洁, 覃金丽, 蓝平. 耐盐性淀粉基高吸水凝胶研究进展. 化工新型材料, 2022, 50(8), 245–251.
王硕, 王永贵, 肖泽芳, 谢延军. 生物基水凝胶制备与应用研究进展. 林产化学与工业, 2022, 42(5), 122–136.
李德强, 张佳琪, 李君, 许凤. 果胶改性及其在药物递送载体中的应用进展. 精细化工, 2021, 38(11), 2171–2180.
朱益锐, 蔡志祥, 郭亚龙, 张洪斌. 基于透明质酸构建的功能材料及其在生物医药领域中的应用. 功能高分子学报, 2021, 34(1), 26–48.
Fan, Z. P.; Cheng, P.; Zhang, P.; Zhang, G. M.; Han, J.Rheological insight of polysaccharide/protein based hydrogels in recent food and biomedical fields: a review. Int. J. Biol. Macromol., 2022, 222, 1642–1664.
周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展. 中国塑料, 2022, 36(7), 74–84.
李良, 吴瑀婕, 杨静, 马晶晶, 杨彪, 邹烨, 王道营, 徐为民. 多功能型明胶黏合剂的制备及应用研究进展. 肉类研究, 2022, 36(4), 57–64.
Li, R. T.; Liu, K.; Huang, X.; Li, D.; Ding, J. X.; Liu, B.; Chen, X. S.Bioactive materials promote wound healing through modulation of cell behaviors. Adv. Sci., 2022, 9(10), e2105152.
Liu, B.; Li, C.; Wang, Y. C.; Nie, J.; Zhu, X. Q.Preparation of shaped non-polyelectrolyte hydrogel particles with decomposable and recyclable performance by vortex ring freezing. J. Ind. Eng. Chem., 2021, 103, 247–254.
Dalei, G.; Das, S.; Ranjan Jena, S.; Jena, D.; Nayak, J.; Samanta, L.In situ crosslinked dialdehyde guar gum-chitosan Schiff-base hydrogels for dual drug release in colorectal cancer therapy. Chem. Eng. Sci., 2023, 269, 118482.
糜志远, 陈晓雨, 姚晓琳, 徐凯, 刘华兵, 李娜, 刘宁. 双网络水凝胶形成和自愈机制研究进展. 现代食品科技, 2022, 38(1), 398–410.
Ye, J.; Fu, S. W.; Zhou, S. Y.; Li, M. H.; Li, K. Y.; Sun, W.; Zhai, Y. L.Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. Eur. Polym. J., 2020, 139, 110024.
Yang, J. Y.; Chen, Y.; Zhao, L.; Zhang, J. H.; Luo, H.Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym. Rev., 2023, 63(3), 574–612.
Luo, Y. N.; Tan, J. Y.; Zhou, Y.; Guo, Y. Q.; Liao, X. Y.; He, L.; Li, D.; Li, X. X.; Liu, Y.From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: a review. Int. J. Biol. Macromol., 2023, 231, 123308.
Tan, J. Y.; Luo, Y. N.; Guo, Y. Q.; Zhou, Y.; Liao, X. Y.; Li, D.; Lai, X. Y.; Liu, Y.Development of alginate-based hydrogels: crosslinking strategies and biomedical applications. Int. J. Biol. Macromol., 2023, 239, 124275.
Mushtaq, F.; Raza, Z. A.; Batool, S. R.; Zahid, M.; Onder, O. C.; Rafique, A.; Nazeer, M. A.Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int. J. Biol. Macromol., 2022, 218, 601–633.
Cui, C. L.; Jia, Y. Z.; Sun, Q.; Yu, M. T.; Ji, N.; Dai, L.; Wang, Y. F.; Qin, Y.; Xiong, L.; Sun, Q. J.Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr. Polym., 2022, 291, 119624.
Li, J. M.; Li, H.; Wu, C. W.; Zhang, W.PVA-AAm-AG multi-network hydrogel with high mechanical strength and cell adhesion. Polymer, 2022, 247, 124786.
Xie, X. H.; Lei, Y. L.; Li, Y.; Zhang, M. Y.; Sun, J.; Zhu, M. Q.; Wang, J. L.Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. J. Colloid Interface Sci., 2023, 637, 20–32.
Zeng, W. S.; Yu, W. H.; Shen, J. H.; Chen, P.; Shi, Z. Z.; Xie, G. L.; Zhang, Y.; Wang, H.; Guo, N.Tannic acid-inspired antibacterial hydrogel with antioxidant and anti-inflammatory properties for Staphylococcus aureus-infected wound healing. Eur. Polym. J., 2023, 198, 112425.
Hu, W. K.; Chen, Z. S.; Chen, X.; Feng, K. X.; Hu, T.; Huang, B. H.; Tang, J. L.; Wang, G. Y.; Liu, S. Y.; Yang, G. H.; Wang, Z. J.Double-network cellulose-based hybrid hydrogels with favourable biocompatibility and antibacterial activity for wound healing. Carbohydr. Polym., 2023, 319, 121193.
Yang, C. K.; Zhang, Y. Z.; Zhang, X. X.; Tang, P. P.; Zheng, T. T.; Ran, R. M.; Li, G. Y.An injectable, self-healing, and antioxidant collagen- and hyaluronic acid-based hydrogel mediated with Gallic acid and dopamine for wound repair. Carbohydr. Polym., 2023, 320, 121231.
Lee, Y. M.; Lu, Z. W.; Wu, Y. C.; Liao, Y. J.; Kuo, C. Y.An injectable, chitosan-based hydrogel prepared by Schiff base reaction for anti-bacterial and sustained release applications. Int. J. Biol. Macromol., 2024, 269(Pt 1), 131808.
Ghosh, T.; Das, A. K.Dynamic boronate esters cross-linked guanosine hydrogels: a promising biomaterial for emergent applications. Coord. Chem. Rev., 2023, 488, 215170.
Huang, F.; Chen, J. J.; Mao, X.; Tang, S. Q.Preparation and biological properties of Schiff-base hydrogels crosslinked by benzaldehyde substituted agarose oligosaccharides. React. Funct. Polym., 2023, 193, 105745.
Li, X.; Yang, Z.; Hu, G. R.; Dong, F. P.; Xiong, Y. Z.; Yuan, C.Tri-network, physical cross-linked sodium alginate hydrogel with strongly self-healing capacity and highly tough, for wearable flexible devices. Eur. Polym. J., 2024, 209, 112823.
Sun, W. X.; Bu, K. X.; Meng, H. M.; Zhu, C. H.Hawthorn pectin/soybean isolate protein hydrogel bead as a promising ferrous ion-embedded delivery system. Colloids Surf. B Biointerfaces, 2024, 237, 113867.
Cai, Y.; Xin, L. Y.; Li, H.; Sun, P.; Liu, C.; Fang, L.Mussel-inspired controllable drug release hydrogel for transdermal drug delivery: hydrogen bond and ion-dipole interactions. J. Control. Release, 2024, 365, 161–175.
Yang, Y. X.; Huang, Y. Y.; Chen, H. Y.; Chen, L.; Liu, S. M.; Zhang, X. Z.Supramolecular hydrogels mediated by cucurbit[6]uril-modified Fe3O4 with self-healing, photothermal responsiveness and stretchability for flexible electronics. Colloids Surf. A Physicochem. Eng. Aspects, 2024, 694, 134042.
Liu, H. L.; Jiao, Y.; Forouzanfar, T.; Wu, G.; Guo, R.; Lin, H. Y.High-strength double-network silk fibroin based hydrogel loaded with Icariin and BMSCs to inhibit osteoclasts and promote osteogenic differentiation to enhance bone repair. Biomater. Adv., 2024, 160, 213856.
Ghorbani, M.; Vasheghani-Farahani, E.; Azarpira, N.; Hashemi-Najafabadi, S.; Ghasemi, A.Dual-crosslinked in situ forming alginate/silk fibroin hydrogel with potential for bone tissue engineering. Biomater. Adv., 2023, 153, 213565.
Lin, Y. K.; Chen, S. Q.; Liu, Y.; Guo, F. B.; Miao, Q. Y.; Huang, H. Z.A composite hydrogel scaffold based on collagen and carboxymethyl chitosan for cartilage regeneration through one-step chemical crosslinking. Int. J. Biol. Macromol., 2023, 226, 706–715.
Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y.Double-network hydrogels with extremely high mechanical strength. Adv. Mater., 2003, 15(14), 1155–1158.
范治平, 程萍, 丁壮, 赵燕娜, 李军, 刘敏, Sangeeta Prakash, 张德蒙, 王文丽, 王正平, 韩军. pH敏感型聚谷氨酸/透明质酸基互穿网络医用水凝胶的制备及表征. 高分子通报, 2020, (2), 23–37.
Liu, F. L.; Wang, L.; Zhai, X. R.; Ji, S. X.; Ye, J. J.; Zhu, Z. Q.; Teng, C.; Dong, W.; Wei, W.A multi-functional double cross-linked chitosan hydrogel with tunable mechanical and antibacterial properties for skin wound dressing. Carbohydr. Polym., 2023, 322, 121344.
Wang, J.; Chen, Z. G.; Zhang, W. B.; Lei, C.; Li, J. M.; Hu, X. F.; Zhang, F.; Chen, C.The physical and structural properties of acid-Ca2+ induced casein-alginate/Ca2+ double network gels. Int. J. Biol. Macromol., 2023, 245, 125564.
Chen, H. J.; Wei, P.; Xie, Y. H.; Huang, X. L.; Cheng, Z. N.Acrylic-grafted nanocellulose hybrid double-network hydrogel with super-high toughness for water shutoff treatments. Chem. Eng. Res. Des, 2023, 197, 136–147.
Wang, H. J.; Wang, J. F.; Li, W. T.; Li, Z.; Zhang, X. Y.; Zheng, W. T.; Su, T.; Zhang, J. Q.A double cross-linked network structure hydrogel with CNF–C: synergistically enhanced mechanical properties and sensitivity of flexible strain sensors. Ceram. Int., 2023, 49(22), 35939–35947.
He, W. D.; Xu, F.; Lu, S. J.; Zhang, Y. F.; Fan, H. S.Flexible and recoverable ion-conductive hydrogels with cross-linked triple network for highly sensitive wearable Motion-monitoring sensors. Next Mater., 2023, 1(3), 100027.
Shen, K. H.; Chiu, T. H.; Teng, K. C.; Yu, J.; Yeh, Y. C.Fabrication of triple-crosslinked gelatin/alginate hydrogels for controlled release applications. Int. J. Biol. Macromol., 2023, 250, 126133.
Wang, R.; Li, N.; Jiang, B.; Li, J. H.; Hong, W.; Jiao, T. F.Facile preparation of agar/polyvinyl alcohol-based triple-network composite hydrogels with excellent mechanical performances. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 615, 126270.
Jia, B.; Li, G. W.; Cao, E. T.; Luo, J. L.; Zhao, X.; Huang, H. Y.Recent progress of antibacterial hydrogels in wound dressings. Mater. Today Bio, 2023, 19, 100582.
Liu, Y.; Ma, Q. B.; Liu, S. H.; Lin, D. Q.; Zhao, H. C.; Liu, X. X.; Zhou, G. Y.Research progress on antimicrobial hydrogel dressing for wound repair. Eur. Polym. J., 2023, 197, 112372.
Qiao, L. P.; Liang, Y. P.; Chen, J. Y.; Huang, Y.; Alsareii, S. A.; Alamri, A. M.; Harraz, F. A.; Guo, B. L.Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioact. Mater., 2023, 30, 129–141.
Liu, X. N.; Zhang, Y. J.; Liu, Y. J.; Hua, S. M.; Meng, F. J.; Ma, Q. L.; Kong, L. M.; Pan, S. H.; Che, Y. J.Injectable, self-healable and antibacterial multi-responsive tunicate cellulose nanocrystals strengthened supramolecular hydrogels for wound dressings. Int. J. Biol. Macromol., 2023, 240, 124365.
Nie, L.; Wei, Q. Q.; Sun, M.; Ding, P.; Wang, L.; Sun, Y. F.; Ding, X. Y.; Okoro, O. V.; Jiang, G. H.; Shavandi, A.Injectable, self-healing, transparent, and antibacterial hydrogels based on chitosan and dextran for wound dressings. Int. J. Biol. Macromol., 2023, 233, 123494.
Mirhaji, S. S.; Soleimanpour, M.; Derakhshankhah, H.; Jafari, S.; Mamashli, F.; Rooki, M.; Karimi, M. R.; Nedaei, H.; Pirhaghi, M.; Motasadizadeh, H.; Ghasemi, A.; Nezamtaheri, M. S.; Saadatpour, F.; Goliaei, B.; Delattre, C.; Saboury, A. A.Design, optimization and characterization of a novel antibacterial chitosan-based hydrogel dressing for promoting blood coagulation and full-thickness wound healing: a biochemical and biophysical study. Int. J. Biol. Macromol., 2023, 241, 124529.
Nguyen, Q. T.; Nguyen, V. T.; Nguyen, D. T.; Pham, N. T.; Nguyen, T. K.; Thi Yen Nhi, T.; Tran, N. Q.; Le Thi, P.Injectable hydrogel combining alginate and Rhodomyrtus tomentosa medicine with antibacterial, anti-inflammatory and cellular proliferation properties as potential wound dressing material. Mater. Today Commun., 2023, 35, 106243.
Yang, Y. Y.; Zhang, C.; Gong, M.; Zhan, Y.; Yu, Z. K.; Shen, C.; Zhang, Y. H.; Yu, L.; Chen, Z. X.Integrated photo-inspired antibacterial polyvinyl alcohol/carboxymethyl cellulose hydrogel dressings for pH real-time monitoring and accelerated wound healing. Int. J. Biol. Macromol., 2023, 238, 124123.
林柏仲, 赵丽, 王宏伟, 朱浩鹏, 盖广清, 王立艳, 丁建勋. 生物黏合水凝胶研究进展. 功能高分子学报, 2020, 33(2), 125–140.
Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G.Highly stretchable and tough hydrogels. Nature, 2012, 489(7414), 133–136.
Liu, C. L.; Fu, L. H.; Jiang, T.; Liang, Y. F.; Wei, Y.High-strength and self-healable poly(acrylic acid)/chitosan hydrogel with organic-inorganic hydrogen bonding networks. Polymer, 2021, 230, 124006.
Yu, Q.; Yan, Y. G.; Huang, J.; Liang, Q. Y.; Li, J. H.; Wang, B.; Ma, B. J.; Bianco, A.; Ge, S. H.; Shao, J. L.A multifunctional chitosan-based hydrogel with self-healing, antibacterial, and immunomodulatory effects as wound dressing. Int. J. Biol. Macromol., 2023, 231, 123149.
Chen, Z.; Yao, J. P.; Zhao, J. L.; Wang, S. G.Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis. Int. J. Biol. Macromol., 2023, 225, 1235–1245.
Zeng, Q. K.; Qi, X. L.; Shi, G. Y.; Zhang, M.; Haick, H.Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano, 2022, 16(2), 1708–1733.
Dolinina, E. S.; Parfenyuk, E. V.Effect of hyaluronic acid encapsulation in a silica hydrogel matrix on drug penetration through the skin. Mendeleev Commun., 2023, 33(4), 556–558.
Fang, Y.; Shi, L. L.; Duan, Z. W.; Rohani, S.Hyaluronic acid hydrogels, as a biological macromolecule-based platform for stem cells delivery and their fate control: a review. Int. J. Biol. Macromol., 2021, 189, 554–566.
Wang, W. D.; Ummartyotin, S.; Narain, R.Advances and challenges on hydrogels for wound dressing. Curr. Opin. Biomed. Eng., 2023, 26, 100443.
Zhao, H. J.; Zhang, Y. S.; Zhou, C.; Zhang, C. L.; Liu, B.Engineering pH responsive carboxyethyl chitosan and oxidized pectin-based hydrogels with self-healing, biodegradable and antibacterial properties for wound healing. Int. J. Biol. Macromol., 2023, 253, 127364.
Liu, Y. F.; Wang, A. F.; Su, C.; Zhu, G. Y.; Yi, F. P.; Xue, Z. T.Preparation and evaluation of chitosan/MCM-41-based spongy hydrogels loaded with tea tree oil. Colloids Surf. A Physicochem. Eng. Aspects, 2024, 691, 133862.
He, G. H.; Zhou, Y. Q.; Chen, X. H.; Ma, T. D.; Yin, Y. H.; Chu, Y. Y.; Fan, L. H.; Cai, W. Q.Preparation of poly (vinyl alcohol)/polydopamine/tannin acid composite hydrogels with dual adhesive, antioxidant and antibacterial properties. Eur. Polym. J., 2024, 205, 112708.
Khosravi, Z.; Kharaziha, M.; Goli, R.; Karimzadeh, F.Antibacterial adhesive based on oxidized tannic acid-chitosan for rapid hemostasis. Carbohydr. Polym., 2024, 333, 121973.
Li, L.; Wang, Y. L.; Huang, Z. J.; Xu, Z. X.; Cao, R. P.; Li, J. X.; Wu, B. Y.; Lu, J. R.; Zhu, H.An additive-free multifunctional β-glucan-peptide hydrogel participates in the whole process of bacterial-infected wound healing. J. Control. Release, 2023, 362, 577–590.
Lin, X. L.; Fu, T.; Lei, Y. Q.; Xu, J. J.; Wang, S.; He, F. M.; Xie, Z. J.; Zhang, L.An injectable and light curable hyaluronic acid composite gel with anti-biofilm, anti-inflammatory and pro-healing characteristics for accelerating infected wound healing. Int. J. Biol. Macromol., 2023, 253(Pt 5), 127190.
Andrianopoulou, A.; Sokolowski, K.; Wenzler, E.; Bulman, Z. P.; Gemeinhart, R. A.Assessment of antibiotic release and antibacterial efficacy from pendant glutathione hydrogels using ex vivo porcine skin. J. Control. Release, 2024, 365, 936–949.
Andrade Del Olmo, J.; Alonso, J. M.; Sáez Martínez, V.; Ruiz-Rubio, L.; Pérez González, R.; Vilas-Vilela, J. L.; Pérez-Álvarez, L.Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus. Mater. Sci. Eng. C Mater. Biol. Appl., 2021, 125, 112102.
Sen, R. K.; Prabhakar, P.; Mayandi, V.; Dwivedi, N.; Yadav, A. K.; Solanki, P. R.; Gupta, A.; Gowri, V. S.; Lakshminarayanan, R.; Verma, N. K.; Mondal, D. P.; Srivastava, A. K.; Dhand, C.Metal mediated high performance antimicrobial hydrogel films for wound infection management: Zn, Cu, and Mg versus Ag and Au. Mater. Chem. Phys., 2023, 297, 127365.
Zhao, Y. T.; Guo, P. Y.; Li, D.; Liu, M. J.; Zhang, J. H.; Yuan, K.; Zheng, H.; Liu, L.Preparation and evaluation of oxidized-dextran based on antibacterial hydrogel for synergistic photodynamic therapy. Int. J. Biol. Macromol., 2023, 253(Pt 8), 127648.
Zhao, N. Y.; Yuan, W. Z.Antibacterial, conductive nanocomposite hydrogel based on dextran, carboxymethyl chitosan and chitosan oligosaccharide for diabetic wound therapy and health monitoring. Int. J. Biol. Macromol., 2023, 253(Pt 1), 126625.
Wang, Y. X.; Wang, Z. C.; Lu, W. Y.; Hu, Y.Review on chitosan-based antibacterial hydrogels: preparation, mechanisms, and applications. Int. J. Biol. Macromol., 2024, 255, 128080.
Farha, A. K.; Yang, Q. Q.; Kim, G.; Li, H. B.; Zhu, F.; Liu, H. Y.; Gan, R. Y.; Corke, H.Tannins as an alternative to antibiotics. Food Biosci., 2020, 38, 100751.
Phonrachom, O.; Charoensuk, P.; Kiti, K.; Saichana, N.; Kakumyan, P.; Suwantong, O.Potential use of propolis-loaded quaternized chitosan/pectin hydrogel films as wound dressings: preparation, characterization, antibacterial evaluation, and in vitro healing assay. Int. J. Biol. Macromol., 2023, 241, 124633.
Xu, X.; Zeng, Y. B.; Chen, Z.; Yu, Y.; Wang, H. B.; Lu, X. H.; Zhao, J. L.; Wang, S. G.Chitosan-based multifunctional hydrogel for sequential wound inflammation elimination, infection inhibition, and wound healing. Int. J. Biol. Macromol., 2023, 235, 123847.
Zhang, M. Y.; Xu, W. X.; Li, X. D.; Ling, G. X.; Zhang, P.Tunicate-mimetic antibacterial hydrogel based on metal ion crosslinking and chitosan functionalization for wound healing. Int. J. Biol. Macromol., 2023, 244, 125062.
Gwon, K.; Lee, S.; Kim, Y.; Choi, J.; Kim, S.; Kim, S. J.; Hong, H. J.; Hwang, Y.; Mori, M.; Lee, D. N.Construction of a bioactive copper-based metal organic framework-embedded dual-crosslinked alginate hydrogel for antimicrobial applications. Int. J. Biol. Macromol., 2023, 242(Pt 1), 124840.
Kim, N. G.; Chandika, P.; Kim, S. C.; Won, D. H.; Park, W. S.; Choi, I. W.; Lee, S. G.; Kim, Y. M.; Jung, W. K.Fabrication and characterization of ferric ion cross-linked hyaluronic acid/pectin-based injectable hydrogel with antibacterial ability. Polymer, 2023, 271, 125808.
Turner, J. G.; Laabei, M.; Li, S. X.; Estrela, P.; Leese, H. S.Antimicrobial releasing hydrogel forming microneedles. Biomater. Adv., 2023, 151, 213467.
Pan, M.; Ren, Z. B.; Ma, X. H.; Chen, L.; Lv, G. H.; Liu, X. Y.; Li, S.; Li, X. Y.; Wang, J. Q.A biomimetic peptide-drug supramolecular hydrogel as eyedrops enables controlled release of ophthalmic drugs. Acta Biomater., 2023, 167, 195–204.
Klučáková, M.; Závodská, P.Diffusion of sulphonamide antibiotics in agarose hydrogels enriched by humic acids. Colloids Surf. A Physicochem. Eng. Aspects, 2023, 673, 131825.
Liu, S. X.; Cong, H. L.; Yu, B.; Shen, Y. Q.Screening of a short chain antimicrobial peptide-LKLHI and its application in hydrogels for wound healing. Int. J. Biol. Macromol., 2023, 238, 124056.
Cao, W. B.; Zhou, X. H.; Tu, C. X.; Wang, Z. L.; Liu, X. Q.; Kang, Y. Y.; Wang, J.; Deng, L. W.; Zhou, T.; Gao, C. Y.A broad-spectrum antibacterial and tough hydrogel dressing accelerates healing of infected wound in vivo. Biomater. Adv., 2023, 145, 213244.
Wang, X.; Zhao, D. H.; Li, Y. T.; Zhou, X. P.; Hui, Z. X.; Lei, X. L.; Qiu, L.; Bai, Y.; Wang, C.; Xia, J.; Xuan, Y.; Jiang, P. J.; Wang, J. H.Collagen hydrogel with multiple antimicrobial mechanisms as anti-bacterial wound dressing. Int. J. Biol. Macromol., 2023, 232, 123413.
Fang, X. L.; Liu, Y. D.; Zhang, M. M.; Zhou, S. W.; Cui, P. F.; Hu, H.; Jiang, P. J.; Wang, C.; Qiu, L.; Wang, J. H.Glucose oxidase loaded thermosensitive hydrogel as an antibacterial wound dressing. J. Drug Deliv. Sci. Technol., 2022, 76, 103791.
Cao, R. P.; Li, L.; Xu, Z. X.; Li, J. X.; Wu, D. L.; Wang, Y. L.; Zhu, H.The lipidation and glycosylation enabling bioactivity enhancement and structural change of antibacterial peptide G3. Bioorg. Med. Chem. Lett., 2023, 90, 129322.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构